
CONTROL: SOFTWARE FOR END-USER INTERFACE PROGRAMMING
AND INTERACTIVE PERFORMANCE

Charles Roberts

University of California at Santa Barbara
Media Arts and Technology Program

charlie@charlie-roberts.com

ABSTRACT

The author presents Control, a software application for
mobile devices enabling users to define custom graphi-
cal user interfaces for transmitting both OSC and MIDI.
Unlike other similar mobile applications, interfaces are
defined using web standards such as HTML, CSS and
JavaScript. The widgets that come predefined with Con-
trol can be extended by users via JavaScript; scripting can
also be used by users to define new widgets from scratch.
The ability to add user defined scripting provides flexi-
bility, dynamism and sophistication to interfaces that is
absent in other mobile interface applications.

Control is free to download from the Apple App Store
and will also be freely available from the Android Market
by the time this paper is published. Devices running Con-
trol can be automatically discovered on a network; once
this occurs servers can ”push” interfaces to them that are
ready for immediate use. Bi-directional communication
with Control also allows servers to update widget values
and dynamically restructure interfaces on the fly. These
features make it ideal for audience interaction pieces and
installation art as participants can download the software
for free, be pushed a custom interface and quickly begin
interacting with a work. This paper will describe the ad-
vantages and disadvantages of Control over other inter-
face applications for mobile devices.

1. INTRODUCTION

1.1. Motivation

As mobile smart devices proliferate, so do applications
enabling musicians and artists to use these devices to con-
trol external software. These applications draw heavily
from the JazzMutant Lemur 1, a dedicated stationary mul-
titouch surface that empowered users to define their own
interfaces for sending Open Sound Control (OSC)[5] mes-
sages. Unfortunately, the mobile applications that fol-
lowed the Lemur did not imitate the feature that made
it more than just a collection of virtual sliders and but-
tons: end-user scripting. By giving users the ability to
write custom scripts that could be attached to widgets the
Lemur enabled dynamic interfaces that would otherwise
have been impossible. A primary motivation of Control

1http://www.jazzmutant.com

is the desire to program interfaces on mobile devices that
could match the complexity of those present on the Lemur
while reaping the benefits of portable, wireless interaction
that mobile devices provide.

Other important motivations include easing the design
of audience interaction pieces and enabling the ability to
send contextual interfaces to users inside of Virtual Real-
ity Environments (VREs). The author researches interac-
tive control of VREs inside of the Allosphere[1]: a three
story, spherical, immersive instrument that can accommo-
date up to thirty users simultaneously. Providing Allo-
sphere researchers the ability to present users contextual,
individualized interfaces was another major design con-
sideration when creating Control.

1.2. Terminology

The Application Interface is the interface users see when
they first launch the Control application. The applica-
tion interface is used to set preferences, choose destina-
tions and protocols for sending control information, and to
download and launch user interfaces. User Interfaces are
individual interfaces written in JavaScript Object Notation
(JSON) with custom JavaScript for specialized scripting.
Some user interfaces are included with Control while oth-
ers can be downloaded from the internet or are created by
users.

Widgets are graphical elements presented in user in-
terfaces that (for the most part) generate data in response
to touch events. Sensors are hardware components in de-
vices whose signals can be transmitted using OSC and
MIDI by Control.

Clients are instances of Control running on mobile de-
vices. Servers are software applications running on com-
puters receive data from instances of Control. Bi-directional
communication is also possible between clients and servers.

2. RELATED WORK

For the sake of brevity related work is defined here as mul-
titouch control surfaces geared towards use in the arts.
Now discontinued, the JazzMutant Lemur basically in-
vented this market in 2005. Although a significant por-
tion of the Lemur focused on providing virtual versions
of physical widgets that are standard in musical interfaces
(sliders, knobs, buttons etc.) it also offered a number of

mailto:charlie@charlie-roberts.com

interesting affordances to users that have yet to be dupli-
cated in mobile device software. The Lemur came with
a variety of non-traditional interface elements for users
to employ, each of which had its own physics engine at-
tached to it. A single interface (even a single widget)
could output to multiple OSC destinations. It was easy
for users to add scripts in order to execute simple behav-
iors like outputting arbitrary OSC messages or constrain-
ing the output of one widget based on the current state
of another. One of the main design goals of Control is
to match and exceed the scriptability of the Lemur and to
eventually feature a library of widgets as diverse as the
Lemur’s. That said, Control reaps the significant advan-
tages of running on wireless mobile devices possessing an
array of sensors that the touch dependent, wired, station-
ary Lemur never possessed. The scripting possibilities of
Control also allow for widgets to be rearranged or recon-
figured on the fly in response to OSC or MIDI messages
and for the creation of custom widgets.

The ReacTable[3] is a control surface for audio that
does away with traditional paradigms of interaction as-
sociated with audio manipulation. Although originally
not technically multitouch, the original ReacTable does
track the position and rotation of multiple physical mark-
ers placed on its surface. In addition to using position and
rotation of the markers it also uses the physical proxim-
ity of the markers to each other as a parameter for sound
synthesis and processing. Originally a large physical table
with a projected display, the ReacTable software now also
runs on iOS devices, where multitouch allows users to ma-
nipulate virtual representations of the formerly physical
markers. In the author’s opinion the mobile ReacTable in-
terface is extremely creative and unique; it is the author’s
hope that after further development users will be able to
design interfaces of similar complexity and creativity us-
ing Control.

TouchOSC2 is the most popular OSC interface pro-
gram in Apple’s App Store at the time of this writing and
is also available for Android devices. One strong feature
of TouchOSC is a companion desktop application that al-
lows users to construct their own interfaces using a GUI
instead of by writing markup. Unfortunately, there are
many factors preventing the use of TouchOSC in interac-
tive performances and installations. First, the application
is not free for iOS devices. In the author’s opinion it is
unlikely that potential participants in an interactive work
will be willing to pay money to download the software
immediately before a performance. Even if participants
were willing to pay there is no public API for pushing
interfaces to mobile devices running TouchOSC; the ap-
plication was clearly created with a different set of design
goals from Control. Finally, there is no scripting capabil-
ity to add behaviors to widgets. Simple behaviors such as
having a button affect the position of a slider are not pos-
sible with TouchOSC and users are not able to define their
own widgets.

2http://hexler.net/software/touchosc

Mrmr3 is a project for iOS that has some similar de-
sign goals to Control. It features a protocol for pushing
interfaces to clients and manipulating them using OSC. It
also has auto-discovery via Bonjour so that clients run-
ning Mrmr on mobile devices can easily participate in in-
teractive performances and installations using their own
devices. However, Mrmr eschews the benefits of script-
ing in favor of using a deliberately simple application-
specific protocol for describing interfaces. In contrast,
Control is built using web standards such as JavaScript,
JSON, CSS and HTML. These technologies provide much
greater flexibility to users as well as greater potential for
interoperability than application-specific syntaxes. As men-
tioned previously the end-user scripting available in Con-
trol provides capabilities that are critical for the design of
complex interfaces.

3. CONTROL

3.1. Overview

Control currently runs on iOS devices and is built using
open-source web technologies. It is capable of outputting
both OSC and MIDI messages depending on the type of
network destination users choose. In addition to data from
the touchscreen Control can also read and transmit data
from the Accelerometer, Gyroscope and Compass sensors
present in devices. The application GUI consists of four
simple tabs:

• Interfaces: a list of interfaces that the user can run
on their device. There are also buttons to add new
interfaces from the internet and to remove interfaces
from the device.

• Destinations: a list of OSC / MIDI IP addresses and
ports that Control can transmit information to.

• Preferences: miscellaneous preferences such as whether
or not to stop the device screen from locking while
the application is running

• Info: links to additional resources and credits

Users define custom interfaces in JSON; these inter-
faces can be downloaded over a standard TCP/IP connec-
tion from a web server or pushed to a device via OSC.
In addition to using JSON to define interface structure
users can also program custom behaviors for widgets us-
ing JavaScript.

Figure 1 shows both the main application interface and
a user interface running the Game of Life.

3.2. Standardization and Web Technologies

Control is built using a variety of open-source web li-
braries and frameworks. The PhoneGap project 4 played
a particularly significant role in the development of Con-
trol. PhoneGap presents user interfaces on mobile devices

3http://mrmr.noisepages.com/
4http://www.phonegap.com

Figure 1. Screenshots of the application interface and a
user interface that plays the Game of Life. The Game
of Life interface uses button widgets as cells that can be
toggled on and off by touch in addition to the rules of the
game. The tick speed can be changed by a slider.

in a web browser and is designed to run on a wide variety
of mobile operating systems. Unlike standard web appli-
cation programming where the programmer does not have
access to underlying hardware features of devices, Phone-
Gap provides a useful abstraction for accessing hardware
features via JavaScript across all operating systems it sup-
ports. By building the GUI of the software using Phone-
Gap the process of porting the application to other operat-
ing systems is eased; the port of the GUI (both the appli-
cation interface and user interfaces) is almost automatic
to operating systems that employ a modern web rendering
engine.

The application interface of Control is designed using
HTML, CSS and JavaScript. User interfaces are primarily
defined in JSON; when these interfaces are read by Con-
trol they are translated into HTML + CSS and rendered
by the web engine. By basing user interfaces on web stan-
dards the barrier of entry to creating them is lowered for
potential users with basic web programming experience.
Web standards also open the possibility of Control being
ported to run inside of web browsers running on personal
computers and to other web-enabled devices. Finally, ad-
hering to standards should help ensure that interfaces from
Control will still be operable in the future.

3.3. Access to Sensors

One goal of Control is to permit access to as many of the
sensors present on mobile devices as possible. Currently
this list includes the accelerometer, the compass (magne-
tometer), and the gyroscope. The gyroscope in particular
is an extremely useful sensor that allows users to mea-
sure rotational rate. While the accelerometer is successful
at measuring sudden gestural movements coupling it with

the gyroscope adds a great deal of resolution when mea-
suring orientation. Users can select the rate that these sen-
sors output at; this can help stop sensor data from flood-
ing external software with MIDI or OSC messages or may
be used to achieve interesting quantization effects. Al-
though many mobile applications provide access to the
accelerometer, the author believes that Control is the only
mobile interface application that can also use the Gyro-
scope and Compass to generate OSC and MIDI messages.

The author is currently in collaborating to provide ac-
cess to the microphone and video camera sensors. Both
will have a variety of signal processing algorithms for
users to to obtain data with. Early work has started on us-
ing the microphone to obtain finger velocity when striking
the screen; this is useful, for example, to assign volume to
sounds that are triggered percussively.

3.4. End-User Development

It is not enough to allow users to simply physically ar-
range pre-defined widgets on a screen. Control enables
dynamic interfaces by letting widgets and sensors trigger
JavaScript functions; these functions can also be triggered
upon reception of MIDI and OSC messages. All sensors
and widgets are instantiated as JavaScript objects; Control
attempts to ensure that all sensors and widgets are modi-
fiable by the user as much as possible.

There are many simple examples where scripting is
necessary in musical interfaces. As one example, the DJ
interface included in the Control download has a cross-
fader for fading between different sounds. To the left and
the right of the crossfader are toggle buttons that tell the
crossfader to jump to its minimum and maximum values.
This is a extremely simple example of one widget control-
ling the behavior of another, but it is an example that the
vast majority of dedicated mobile interface applications
are not capable of. In applications without scripting sup-
port the toggle buttons would most likely send a control
message to a server application but not change the cross-
fader position. This would make the crossfader position
out of sync with the audio being generated by the server.

As a more complex example Control also comes with
an interface that runs Conway’s Game of Life. Although
it is arguably interesting to listen to sonified cellular au-
tomata the real purpose of this interface was to show the
type of complex, generative behavior that scriptable inter-
faces support. None of the logic for the Game of Life is in-
cluded in the primary application code; it is all JavaScript
that contained in an external interface file.

Although most widgets are defined in JavaScript files
that are bundled with the Control application the scripting
support is robust enough that users can define their own
widgets. This includes the ability to define drawing rou-
tines, hit tests, and how widgets output OSC and MIDI
messages.

3.5. Network Support

All client instances of Control broadcast their IP address
via Bonjour5 so that they can be easily discovered by Bon-
jour/mDNS/Avahi enabled programs. When a server ap-
plication is notified that a client exists the server can push
an interface to the device using OSC. The server can also
specify the client’s destination IP address and port. The
client is presented with a pop-up window letting them ac-
cept the new interface and destination or refuse it.

In addition to broadcasting their availability via Bon-
jour clients also search for Bonjour services that receive
OSC or RTP MIDI [4]. Users can select which of these
services they would like to send messages to in the Desti-
nations tab. They can also manually add new IP address /
port combinations inside the Destinations tab if they want
to send messages to server applications that are not Bon-
jour enabled.

As mentioned previously servers can push new inter-
faces to clients at any time assuming the client approves
this via a pop-up notification. This allows servers to present
clients with different interfaces contextually. Use cases
for presenting contextual interfaces include different move-
ments of an interactive composition or different locations
inside of a virtual reality environment. Servers can also
send arbitrary JavaScript functions to clients to be exe-
cuted. Each interface has access to a custom JavaScript
callback for processing OSC messages allowing users to
define their own OSC namespaces for handling messages.
MIDI messages can be similarly processed via a custom
callback.

4. USE IN PERFORMANCE

At the time of this writing Control has only been available
for a few months; even so, it has already been used in a
wide variety of settings. Users have submitted videos of
projects that allow Control to variously manipulate light-
ing rigs, emulate non-traditional hardware interfaces like
the Haken Continuum6and the Monome7, and perform
more traditional tasks like mixer emulation. Many of these
videos are collected for viewing on the Control website8.

The author has used Control in to perform live DJ sets,
control a simulation of nano-particles attacking a cancer
tumor, wirelessly mix rock bands in clubs and to perform
in an electronic improvisation group. In the three months
that Control has been available it has already been down-
loaded well over fifteen thousand times from the Apple
App Store; the author is thus confident that there will be
many more interesting use cases to report about in the
coming months, especially with its introduction to the An-
droid Market.

5http://www.apple.com/support/bonjour/
6http://www.hakenaudio.com/Continuum/
7http://www.monome.org/
8http://www.charlie-roberts.com/Control/

5. CONCLUSION

Control provides valuable features for creating user in-
terfaces to control musical and artistic applications. In
particular, the scripting support of Control provides flex-
ibility in defining interfaces that no other mobile device
software can match. Control takes advantage of the wide
array of sensors in mobile devices; these sensors provide
interactive affordances to interfaces that other similar ap-
plications do not take advantage of.

Control has many benefits for use in audience partic-
ipation pieces and interactive installation art. First, it is
free to download. Second, client instances can be auto-
discovered when running on the same network as a server
application. Finally, servers can push contextual inter-
faces and trigger JavaScript routines on clients so that in-
terfaces can be dynamically manipulated.

Control is available as a free download for iOS devices
from the Apple App Store and is open-source software un-
der the MIT license9. It should also be available from the
Android Market by the time of this publication. The au-
thor would like to thank Greg Shear and Matt Wright for
their help with the initial design of Control, and Alex Nor-
man and Matias Wilkman for their work porting Control
to run on Android devices.

6. REFERENCES

[1] X. Amatriain, J. Kuchera-Morin, T. Hollerer, and
S. Pope, “The AlloSphere: Immersive Multime-
dia for Scientific Discovery and Artistic Exploration
(HTML),” IEEE MultiMedia, vol. 16, no. 2.

[2] S. Jordà, M. Kaltenbrunner, G. Geiger, and
M. Alonso, “The reactable: a tangible tabletop musi-
cal instrument and collaborative workbench,” in ACM
SIGGRAPH 2006 Sketches, ser. SIGGRAPH ’06.
New York, NY, USA: ACM, 2006. [Online]. Avail-
able: http://doi.acm.org/10.1145/1179849.1179963

[3] J. Lazzaro and J. Wawrzynek, “A case for network
musical performance,” in Proceedings of the 11th
international workshop on Network and operating
systems support for digital audio and video, ser.
NOSSDAV ’01. New York, NY, USA: ACM,
2001, pp. 157–166. [Online]. Available: http:
//doi.acm.org/10.1145/378344.378367

[4] M. Wright and A. Freed, “OpenSoundControl: A pro-
tocol for communication with sound synthesizers,” in
Proceedings of the 1997 International Computer Mu-
sic Conference. International Computer Music As-
sociation, 1997.

9https://github.com/charlieroberts/Control

http://doi.acm.org/10.1145/1179849.1179963
http://doi.acm.org/10.1145/378344.378367
http://doi.acm.org/10.1145/378344.378367

	1 Introduction
	1.1 Motivation
	1.2 Terminology

	2 Related Work
	3 Control
	3.1 Overview
	3.2 Standardization and Web Technologies
	3.3 Access to Sensors
	3.4 End-User Development
	3.5 Network Support

	4 Use in Performance
	5 Conclusion
	6 References

