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ABSTRACT

We present Gibber: a live coding environment for web
browsers. Gibber performances are written in pure Java-
Script with no syntactical additions or modifications; this
enables Gibber code to be executed in any web page viewed
inside a browser implementing a realtime audio API. Gib-
ber offers an array of synthesis options (FM, granular,
subtractive, physical modeling), audio effects and sequenc-
ing objects to control them. The Gibber environment en-
ables simple networked performances where multiple users
simultaneously control a remote instance of Gibber. We
strove to make the syntax of Gibber clear and concise;
when coupled with the ability to run examples in any web
page this gives Gibber interesting possibilities as an edu-
cational tool.

1. INTRODUCTION

The performance practice of live coding has grown dra-
matically over the course of the last decade and the in-
creasing number of practitioners has been accompanied
by a growing number of languages and environments. Into
this context we introduce Gibber: a JavaScript library for
perfoming high-level audio synthesis and sequencing in
web browsers. In addition to its JavaScript implemen-
tation Gibber also includes a performance environment
that can be run in browsers implementing a realtime au-
dio API; Google’s Chrome browser currently provides the
best audio experience but other browsers are also sup-
ported. Gibber is built on top of many open-source Java-
Script libraries, the most important of these being audi-
oLib.js by Jussi Kalliokoski[1]. We layered an extremely
terse syntax on top of audioLib.js and extended it to in-
clude a variety of sequencing options, FM synthesis, gran-
ular synthesis, Karplus-Strong physical modeling, flang-
ing, waveshaping, buffer shuffling and a number of other
oscillators and effects. Some of these have already been
contributed back to audioLib.js; we hope to contribute
more in the future.

1.1. Motivation

The creation of Gibber was motivated by the desire to use
JavaScript as a language for browser-based live coding
performances. When work on Gibber began, no musical
live coding environments using JavaScript existed. Al-
though there are many visual environments that let you

change JavaScript code and quickly see the updated re-
sults, few are geared towards live performance 1. JavaScript,
although sometimes maligned2, is an excellent language
for live coding. Its prototypical nature makes it easy to
extend and combine objects, it is dynamic, features object
introspection and meta-programming and has first-class
functions with closures. This flexibility enabled us to cre-
ate a syntax in which the creation and playback of a sine
wave as simple as:

Sine(440, .5);

In the above example, 440 is the frequency and .5 is
the amplitude of the wave form. Throughout the creation
of Gibber we strove for this level of simple, declarative
syntax. The next example creates a triangle oscillator and
adds distortion and reverb to it:

t = Tri(220, .5);
t.fx.add( Dist(), Reverb() );

By coupling this syntax with an accessible web-based
environment, we hope to provide a vehicle for students
to easily experiment with synthesis. Towards this end, we
included a number of tutorials on additive, subtractive and
FM synthesis with Gibber.

Gibber also supports networked live coding perfor-
mances. To join a networked performance performers sim-
ply launch Gibber in a browser, choose a username and
enter the IP address of a remote computer running the Gib-
ber environment. Any code sent to this remote instance
will be displayed for the audience and other performers
to see (assuming video from the remote computer is pro-
jected as per the typical live coding performance) and ex-
ecuted in the remote context.

1.2. The Browser As A Realtime Synthesis Platform

Over the past twenty years digital audio practitioners have
witnessed the gradual evolution of the the browser as a re-
altime music platform. From its humble beginnings as a
player of (often aesthetically questionable) general MIDI
files, to the use of Java and Flash plugins to synthesize
audio, to the current trend of using native JavaScript for
sample-level synthesis, the browser has, almost since its

1One exception to this is the excellent Livecodelab found at
http://www.sketchpatch.net/livecodelab/

2http://wtfjs.org
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inception, been an environment for realtime music cre-
ation and consumption.

Support for JavaScript based audio synthesis varies
wildly across current web browsers. Google’s Chrome
and Chromium provide the best support; Firefox is a close
second but appears to operate less efficiently and with in-
ferior timing. Gibber’s default script (featuring reverbs,
delays, FM synthesis, physical modeling, drum samples
and various other audio effects) uses an average of 30%
of one core on a 2.8 GHz Intel Core i7 processor under
Chrome while Firefox uses an average of 46%. JavaScript
does receive access to audio output buffers in Internet Ex-
plorer and realtime audio is only available in a limited
form in beta versions of Safari. No mobile web browsers
currently support JavaScript audio synthesis. Apple’s se-
curity restrictions against JIT compilation in mobile web
browsers have stopped the WebGL standard from being
implemented in iOS for many years and similarly block
realtime audio implementations in the browser; there is
little reason to hope that these restrictions will change in
the near future.

These concerns aside, at some point in the future a
standard for web audio will be agreed upon and provide
browser developers with greater motivation to properly
implement realtime audio capabilities. Various standards
have already been suggested; they range from a relatively
simple API providing access to input and output sample
streams[2] to a much more complex API suggested by
Google[8] that provides C++ implementations of convolu-
tion and other expensive DSP algorithms in order to obtain
performance improvements over JIT-compiled JavaScript.

It has been a distinct pleasure using the same program-
ming language to implement our coding environment, per-
form networking for distributed performances and synthe-
size realtime audio. Although there are efficiency limita-
tions for JavaScript-based audio synthesis when compared
to C/C++, these limitations are balanced by the benefits
of an accessible platform with a unified development lan-
guage.

1.3. Related Work

At the time of this writing, toplap.org (an umbrella web-
site for performers interested in live coding) lists thirty-
four active live coding environments; this is by no means
a comprehensive list. In order to position Gibber within
this extensive and growing community, we compare the
following attributes and draw upon a number of live cod-
ing implementations that were influential in the creation
of Gibber:

• Language - Is a new programming language imple-
mented or is an existing language used?

• Synthesis Source - Are synthesis algorithms writ-
ten in the same language used for performance? Is
the live coding language being used to control an
external application?

• High-Level / Low-Level - Does the environment man-
age an audio graph? Do you have access to low-
level sample output?

In terms of language, Gibber is implemented in pure
JavaScript with no syntatic additions or modifications. This
is similiar to live coding environments using languages
descended from Lisp: Impromptu[10], which is written in
Scheme, and Overtone[3], which uses Clojure. JavaScript
itself borrows a great deal from these functional languages,
including functions as first-class objects and closures. Other
langauges such as ixi lang[6] and ChucK[12] implement
new languages for live coding. Another JavaScript live
coding environment was recently announced[4] focusing
on graphics and low-level audio synthesis. This environ-
ment adds special keywords to JavaScript; code written
with these synatactical additions cannot be run using a
standard JavaScript interpreter without preprocessing.

Many live coding environments include synthesis al-
gorithms written in the same language that is used for per-
formance while others are used to control external audio
sources. Impromptu, for example, controls Audio Unit
plugins in OSX; this provides access to an extremely rich
pallete of commercial and open-source synthesizers and
effects. ixi lang and Overtone both control the audio server
found in SuperCollider[7]. Low-level unit generators in
are programmed in C/C++ in ChucK; however, these can
be combined at a higher level using the ChucK language
itself. LuaAV[11] takes a relatively unique approach to
live coding synthesis where graphs of operator expres-
sions are defined using the interpreted Lua language, and
then JIT compiled to machine code to obtain the best per-
formance possible. In Gibber, synthesis is performed in-
ternally using JavaScript. The audio quality of Gibber
currently suffers when compared to platforms that rely
on richly developed synthesis tools like the SuperCollider
server or various commercial audio plugins.

Gibber’s primary focus is on pattern-based music gen-
eration; it features high-level methods that afford sample-
accurate sequencing and synthesis capabilities. In this
way it is very similar to (and directly inspired by) ixi
lang, the aforementioned language layered on top of Su-
perCollider. Although performance practice using Gibber
primarily consists of executing high-level commands to
control sequence and synthesis parameters, Gibber does
provide the ability to override the default audio callback
so that users can directly fill output buffers with samples
using Gibber unit generators.

2. IMPLEMENTATION

Gibber is a JavaScript library for the declarative creation
and sequencing of audio synthesis graphs. It also con-
tributes a performance environment that can be run in web
browsers and affords simple networked music performances.
We will discuss the JavaScript syntax and performance en-
vironment separately.



Figure 1. Gibber running inside of Google Chrome. The red bar in the upper left is a metronome indicating the current
beat in 4/4 time; beat one is currently highlighted.

2.1. Performance Environment

Gibber runs in web browsers that implement an API for
realtime audio synthesis. Users can either download the
performance environment from GitHub to run on their
own computer3 or they can simply visit the Gibber web-
site4. The peformance environment features a code edi-
tor built using the open-source project CodeMirror5. The
editor provided by the CodeMirror library affords syntax
highlighting, line numbering, customized GUI themes and
keystroke shortcuts amongst many other features.

One important addition to the code editor in Gibber
is sample-accurate delay of code execution. Although se-
lected code can be executed immediately via a keystroke
combination, other keystroke combinations allows code
execution to be delayed until the first sample of the next
musical measure or beat. This ensures that the various
sequences that comprise a Gibber performance will be
started and stopped in sample-accurate synchronization if
desired.

The setup for a Gibber networked performance is very
simple. A remote computer runs an instance of Gibber
that multiple clients connect to. Performers can edit code
on their personal computer, monitor the results via head-
phones, and then send it to the remote computer to be pro-
jected and executed if they like the results. In order to host
a networked Gibber session, the remote computer needs
to run a Node.js6 script included in the Gibber download;
there is also a single line of code to execute within the

3https://github.com/charlieroberts/Gibber
4http://www.charlie-roberts.com/gibber
5http://codemirror.net
6http://nodejs.org

Gibber code editor to force it to accept network connec-
tions.

Performers only need to enter the IP address of the
remote Gibber instance and a username to begin transmit-
ting code. The ability to delay code until the first sam-
ple of a musical measure comes in handy for networked
performances; clients are assured that their code will be
executed precisely on the downbeat of the next measure if
desired, regardless of network jitter and latency. At worst,
under extremely high latency, the code will be executed a
measure later than intended but will still generate results
that are in phase with the rest of the performance. In addi-
tion to displaying code, the remote computer also displays
a realtime chatroom that allows performers to communi-
cate during performances; this practice of displaying dia-
logue amongst performers can also be found in the current
network setup used by the Hub and in the recently intro-
duced live coding environment LOLC[5].

In addition to the code editor, the performance envi-
ronment also features a menubar containing quickstart in-
structions, GUIs for loading/saving files and joining dis-
tributed performances, a list of key commands and general
information about the Gibber project. A sample Gibber
session is presented in Figure 1.

2.2. Features

2.2.1. Syntax

As mentioned in the introduction, the audio synthesis in
Gibber is layered on top of the audioLib.js library. This
library comes with a number of unit generators and also
handles browser discrepancies in providing access to out-
put sample buffers. Although excellent for general use,



the audioLib.js syntax is unneccesarily verbose for live
coding. For example, compare the process of defining a
440 Hz square wave in audioLib.js and Gibber:

//audioLib.js
s = new audioLib.Oscillator(44100, 440);
s.waveShape = "square";

// Gibber
s = Square(440);

Note that the above audioLib.js code does not generate
any audio output; a programmer would need to manually
append the oscillator output to a buffer feeding the DAC,
presumably inside a sample loop. In Gibber, the square
wave oscillator is automatically added to a signal process-
ing graph and begins outputting audio immediately.

To further improve terseness and decrease the poten-
tial for typos during performance, we abandon some Java-
Script best practices and take advantage of questionable
language features. The Gibber environment makes exten-
sive use of the global namespace; in doing so we avoid
the need to prefix constructors with a namespace identi-
fier and also mitigate the need to use the var keyword
when declaring variables. We also promote the use of sin-
gle letter variable names; audio and sequencing objects
held in single letter variables are automatically replaced
in the audio / control graphs when reassigned. Consider
the following lines of code:

t = Tri();
s = Seq([440, 880], 1/4).slave(t);

These two lines of code create a triangle oscillator and
sequence it to alternate between pitches of 440 and 880 Hz
every quarter note (sequencing will be discussed in greater
depth shortly). By using single letter variable names, we
can easily substitute a square wave in place of the trian-
gle wave by replacing Tri() with Square() and re-
executing the first line of code. This causes the triangle
oscillator to be removed from the audio graph; Gibber
also will notice that the triangle oscillator was slaved to
our sequencer and assign our new square oscillator to be
slaved. Single letter variables in Gibber can be thought to
function similarly to proxies found in the JITLib quark for
SuperCollider[9].

2.2.2. Modulation and Effects

Modulation and effects are also managed automatically
by the Gibber audio graph. To apply modulation, a pro-
grammer specifies the parameter to modulate, a source for
the modulation and how the modulation output should be
applied. Below is a simple example for vibrato.

s = Sine(440);

// Vibrato : +/- 8 Hz at a rate of 4 Hz
s.mod("frequency", Sine(4, 8), "+");

The “+” shows that we add the ouput of the modulat-
ing sine wave to the frequency component; other opera-
tors include assignment, multiplication, division etc. As
another example, here is an unenveloped FM bell:

carFreq = 200;
c = Sine(carFreq, .15);
cmRatio = 1.4;
index = 190;

c.mod("freq",
Sine(carFreq * cmRatio, index),
"+");

Each oscillator has an effects chain that we can add to and
remove from:

s = Sine(440);
s.fx.add( Flanger(), Delay(), Reverb() );

// remove flanger
s.fx.remove("Flanger");
// remove first effect in chain
s.fx.remove(0);
// remove all effects
s.fx.remove();

Any effect parameter and any modulation parameter can be
modulated; modulations are applied recursively within the audio
signal graph. There is also a global Master object that allows us
to apply effects to the summed audio output of all oscillators.

2.2.3. Rhythm and Timing

Choosing a system for notating time and rhythm in Gibber has
been an interesting challenge. Early on we decided that there
would be an initial emphasis on using 4/4 time. With this em-
pahsis it makes sense that there would be an easy way to indi-
cate both divisions and multiples of a musical measure, how-
ever, we also wanted to retain the freedom to specify precise
durations in samples. The initial solution to this was to create a
set of variables holding the number of samples for subdvisions
of a measure ranging from a whole note to a sixty-fourth note.
These variables were preceded by an underscore character; thus,
4 was a quarter note, 16 was a sixteenth note etc. Durations

lasting longer than a measure could also be easily notated, for
example, 1 * 2.25 represents the number of samples in two
measures and a quarter note.

Although this system worked well for a number of both live
performances and screencasts, it always felt contrived and was
visually unappealing. When considering possible alternatives
the potential visual representations of durations hinted at a better
solution. Instead of using variables to represent subdivisions of a
measure, we now assume that a musical measure is the standard
unit of duration and simply pass a value of 1 to functions ac-
cepting a duration as a parameter in order to indicate a measure
in length. In this system 1/8 represents an eighth note, 1/16
represents a sixteenth note and 16 represents sixteen measures
in length. This is visually much more elegant than our previ-
ous solution and much terser for declaring lengths greater than
one measure in length, for example: 1 * 4.5 simply becomes
4.5.

There are of course problems that arise when using integer
values to represent both durations measured in samples and du-
rations measured as multiples of a musical measure. In Gibber



we assume that any value representing time less than sixty-four
represents a duration measured as a multiple of a measure, while
higher numbers represent durations measured in samples. Sixty-
four is a default value that can be changed for types of music
where longer rests or durations are needed (e.g. the gong of a
gamelan can wait up to 128 measures between strikes).

2.2.4. Sequencing

Although there are a number of objects used to sequence pa-
rameters in Gibber, each is derived from the fundamental Seq
(sequencer) object. The Seq object can be used to sequence any
type of data. As examples, one Seq object might pass chord
identifiers as strings to an Arpeggiator while another might call
a series of different functions, perhaps alternating every measure
between telling another Seq to randomize its values and then re-
setting them to their original contents. Virtually any aspect of
Gibber can be controlled by a Seq object. In the code sample
beloew, the first Seq controls the pitch of an oscillator while the
second randomizes the order of values in the first and resets them
to their original positions every four measures.

s = Sine(440);

// pass an array, a duration for each step
// slave the previously created sine ugen
ss = Seq([ 440,660,880 ], 1/4).slave(s);

// pass two methods to alternate calling
// every four measures
sss = Seq([ss.shuffle, ss.reset], 4);

The Seq object makes a distinction between the sequence
of objects or functions it holds and the durations that define
when these functions are executed. An array of durations can
be passed to the Seq constructor instead of a single duration en-
abling arbitrary rhythms to be sequenced. This separation also
allows for greater control of algorithmic processes as sequence
and duration values can be accessed programmatically using dif-
ferent techniques.

By default, progression through the sequence and durations
arrays occurs linearly. However, users can assign an arbitrary
pick function to either the sequence or durations array that
can instead determine which array position to use when the se-
quencer advances. Gibber includes a surpriseMe() function
that randomly picks an item from an array, and a weight()
function that allows users to weight the likelihood of each item
being chosen. In the example below, we see a Seq object where
frequencies are randomly selected while durations are heavily
weighted towards eighth notes as opposed to quarter and half
notes.

// pass arrays of frequencies and durations
s = Seq( [440,660,880], [1/8,1/4,1/2] );

// tell Seq to randomly pick frequencies
s.sequence.pick = surpriseMe();

// use a weighted random function to pick
// durations
s.durations.pick = weight(.8, .1, .1);

Gibber defines other objects extending Seq that provide ad-
ditional functionality:

• Arp - allows you to easily arpeggiate chords identified by
nomenclature such as “G4m7” and “C4Maj7b9”.

• Drums - in addition to providing drum samples this object
can be quickly sequenced using a string such as “xoxo”
to represent kick and snare hits.

• ScaleSeq - Allows you to sequence a series of notes in
a particular mode that are offsets of a root value. For
example in A aeolian 0 = A, 1 = B, 2 = C etc.

All Seq objects register to receive messages from the Gibber
master clock so that they update their step durations whenever
the master tempo changes.

3. CONCLUSIONS AND FUTURE WORK

Gibber has been used in a number of performances since its
introduction. The first formal concert performance was by the
CREATE Ensemble at UC Santa Barbara, in which six perform-
ers submitted code to a remote computer for execution. It is
worth noting that one of the ensemble members had no pro-
gramming experience but was still able to participate by copy
and pasting code and modifying variable values. The first author
has also performed solo with Gibber both in formal and informal
settings.

We are excited about the educational potential of a syntat-
ically clear live coding environment presented on the web. We
imagine classroom scenarios where a lecturer instructs students
to explore a synthesis topic; after providing some time for exper-
imentation the lecturer could then ask for volunteers to submit
code to a remote instance of Gibber where it could be projected,
executed and critiqued by the class. To further this idea we have
included tutorials on various synthesis techniques in Gibber and
plan to incorporate more.

In terms of future work the audio synthesis capbabilities of
Gibber need to be expanded as the palette of available sounds
is currently somewhat limited. There is also a great deal of op-
timization to be done. As one example, all modulation sources
currently run at audio rate; control-rate modulation would greatly
improve efficiency. We look forward to adding generative graph-
ics capabilities to Gibber and exploring strategies for controlling
both audio and visuals concurrently. Finally, we hope to fur-
ther expand Gibber’s networked performance capabilities with
the addition of audio graph visualizations that inform users about
the activities of their fellow performers.
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