
Collaborative Live-Coding Virtual Worlds with an
Immersive Instrument

Graham Wakefield
KAIST

Daejeon, Republic of Korea
grrrwaaa@gmail.com

Charlie Roberts
University of California
Santa Barbara, USA

charlie@charlie-roberts.com

Matthew Wright
University of California
Santa Barbara, USA

matt@create.ucsb.edu

Timothy Wood
University of California
Santa Barbara, USA
fishuyo@gmail.com

Karl Yerkes
University of California
Santa Barbara, USA

yerkes@mat.ucsb.edu

ABSTRACT
We discuss live coding audio-visual worlds for large-scale
virtual reality environments. We describe Alive, an instru-
ment allowing multiple users to develop sonic and visual
behaviors of agents in a virtual world, through a browser-
based collaborative code interface, accessible while being
immersed through spatialized audio and stereoscopic dis-
play. The interface adds terse syntax for query-based pre-
cise or stochastic selections and declarative agent manipula-
tions, lazily-evaluated expressions for synthesis and behav-
ior, event handling, and flexible scheduling.

Keywords
Live coding, collaborative performance, immersive instru-
ment, multi-agent system, worldmaking

1. INTRODUCTION
Over the last decade live musical practice has demonstrated
the value of run-time malleable code for improvisation, bring-
ing concepts formerly associated with studio composition
and software development into the realm of live performance
[2]. We are inspired to extend this practice to collabora-
tively authoring virtual worlds on-the-fly within immersive
environments.

How can we code worlds while we are immersed within
them? What combinations of constraints and affordances
will best serve performers with mere minutes to bring forth
engaging worlds? To address these challenges we propose
and evaluate Alive, a multi-user browser-based editing in-
terface presenting a multi-paradigm programming model.
We emphasize flexibility and terseness while manipulating
an agent-based simulation model with distributed spatial
audio and stereoscopic rendering.

The improvisatory nature of live coding calls for a dy-
namic approach to specification and modification of the
world. We use data-oriented concepts of entities (agents),
associations (tags), selections (queries) and behaviors (ex-
pressions) in code fragments that may be manually trig-
gered or scheduled for future execution using coroutines.

The project is informed by our work as researchers in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Figure 1: Fish-eye photograph of three performers
standing on the bridge of the AlloSphere and live
coding the world that surrounds them.

the AlloSphere, a three-story, immersive, spherical virtual
reality environment at the University of California, Santa
Barbara [12]. Performers stand alongside the audience on
a bridge suspended through the center of the sphere that
can comfortably accommodate thirty people, surrounded by
over fifty loudspeakers and twenty-six stereoscopic projec-
tors, to create a powerful immersive experience (Figure 1).

Although one specific venue inspired Alive’s development,
it is open-source1 and may be easily applied to other facili-
ties.

2. RELATED WORK
Computer music software has been variously extended [19]
or coupled with game engines [5] for immersive composi-
tions and installations, but we have found little evidence of
live-coding immersive performance. The SmallTalk-derived
SuperCollider audio programming language is extensible via
SCGraph2, which extends the unit generator concept to
modulate 3D OpenGL primitives. This could be used to
live code immersive systems.

Extempore3 and LuaAV [20] are general systems for au-
thoring efficient audio-visual applications, and also support
live coding. Both have been used for networked interac-

1github.com/AlloSphere-Research-Group/alive
2github.com/scgraph/SCGraph
3extempore.moso.com.au



tive multi-display installations, such as Extempore in “The
Physics Playroom” [16], and LuaAV in “Artificial Nature”
[11]. In both cases live coding was used during design and
development, but not for improvised performance.

Fluxus is a graphics-oriented live coding environment and
“a 3D game engine for livecoding worlds into existence” [10].
Fluxus is extensible via the Fluxa4 module for audio synthe-
sis and sequencing. In 2009, performance groups Slub and
Wrongheaded used Fluxus and other audio software to per-
form inside the Immersion Vision Theater, a former plan-
etarium. Dave Griffiths mapped projections via a fisheye
lens to cover the planetarium’s screen5, in what may have
been the world’s first immersive live coding performance.

Gibber [17] and Lich.js6 are browser-based platforms for
multi-user live coding that support both audio and graph-
ics. LOLC [7] enables performers to share code snippets to
iterate ideas within an ensemble. Republic [4] players write
SuperCollider scripts to generate sounds distributed across
all machines, using a chat system for social intervention.

3. DESIGN AND IMPLEMENTATION

Laptop/tablet

Laptop/tablet Code Editor 
Server

Virtual World 
Simulator Renderer

Audio decoder

Audio decoder

Renderer

IPCmDNS
HTTP

websockets
TCP

Laptop/tablet

Figure 2: Architectural overview. Client browsers
on performers’ laptop or tablet devices (left) dis-
play code editors requested from a central server
(center). Edits to the code are sent to the server
and shared back to all clients. The server hosts a
virtual world simulator as a sub-process, to which
code edits are forwarded for execution. The simu-
lator distributes virtual world updates to all audio
and visual rendering machines (right).

Performers use web browser clients to retrieve the live-
coding interface from a server application on the local net-
work. The server forwards all code fragments received from
clients to a simulation engine by interprocess communica-
tion. The simulation engine continuously updates a vir-
tual world of mobile, audio-visual agents via subsystems of
movement, synthesis, collision, and event propagation, then
distributes the resulting world state to all audio and visual
rendering machines installed in the venue (Figure 2). (The
interface, server and simulator can also be run on a single
computer for solo practice.)

3.1 The Live-Coding Interface
The Alive code interface runs in any modern web browser,
communicating with the server application by websockets.
Performers can add code fragments to the editor pane, and
send the currently-selected code for execution by pressing
the Command+Enter keys or double-clicking. If no text is
selected, the whole paragraph containing the cursor is sent.
This makes it very easy to rapidly trigger prepared code

4en.flossmanuals.net/fluxus/ch027_fluxa/
5www.listarc.bham.ac.uk/lists/sc-users-2009/
msg57333.html
6github.com/ChadMcKinney/Lich.js

fragments. A typical performance is a mixture of authoring,
invoking, modifying, and copying fragments.

To encourage collaborative interplay, each performer shares
the same global namespace and also sees and edits the same
live“document”of code. Edits sent to the server are merged
and updates sent back to clients. The shared document
thus collects all code produced by the group performance,
including potentially re-usable code fragments.

The interface also includes a console pane reporting com-
mands executed (in white) and error messages (in red) from
the server. Another pane presents reference documentation
along with short copyable code fragments to assist rapid
experimentation.

3.2 The Virtual World
The principal elements or entities of the world are agents.
This term is variously defined in scientific simulation, com-
puter science, robotics, artificial life and game design [23,
6], but general to most multi-agent systems is the concept
of mobile autonomous processes operating in parallel.

Our agents are transient, spatially-situated identities to
which users associate properties and behaviors. Easily con-
structed and destroyed, their properties can be manipu-
lated directly by assignment or indirectly through the use
of “tags” and “queries” (described below). Properties of a
particular agent might include sonic and visual appearance
as well as behaviors of movement, morphology, and reac-
tivity. Using an associative scheme side-steps constrictive
issues of categorization in favor of dynamic action of wide
applicability [21].

The world has a 3D Euclidean geometry, but is finite and
toroidal. Autonomous agents can easily navigate away off
into the distance, but a toroidal space ensures that move-
ment is never limited nor activity too far away. It is imple-
mented such that no edges to the world are ever perceived,
despite free navigation.

3.3 Audiovisual Rendering
The simulation engine implements a pragmatic approach to
spatial audio not dissimilar to [14] and [19]. The sounds of
each agent are processed to apply distance cues, and their
directional information is encoded using higher-order am-
bisonics. Ambisonic encoding/decoding supports scalabil-
ity in distributed rendering: unlimited numbers of agent
sounds are encoded into just a handful of domain signals,
which can be more easily distributed to multiple decoders
with scalability up to hundreds of loudspeakers. A per-
agent delay, indexed proportionally to distance, simulates
Doppler shift. Sounds are also attenuated and filtered ac-
cording to distance-dependent curves.

Distributed visual rendering (required to drive large num-
bers of projectors) depends on updating all visual rendering
machines with the minimal state to render the scene. Each
machine renders a stereoscopic view of the world properly
rotated and pre-distorted for its attached projectors, result-
ing in a coherent immersive world seamlessly spanning the
venue [12].

4. LANGUAGE INTERFACE DESIGN
Best practices of language and interface design for live cod-
ing differ significantly from general software application de-
velopment [1]. Typical application code is verbose and ex-
tensively commented since it is more often read than written
[9], but in a live scenario every keystroke counts. For cre-
ating whole worlds in real-time, low granularity of control
could easily be overwhelming.

Additionally, where application development uses con-
straints such as strong typing to ensure correctness, in live



performance it is better to interpret permissively than throw
errors; accidents can have creative value! Ephemeral live
coding values the multi-paradigm, ad-hoc, and in-place“hacks”
that application developers try to avoid [15, 3].

In line with these insights, our interface extends the Lua
programming language (featuring a highly flexible data struc-
ture, dynamic typing, re-entrancy, first-class functions, corou-
tines, and automatic memory management) with terse yet
flexible abstractions for live-coding agent-based worlds.

4.1 Properties and tags
Agents have various properties, represented using Lua’s as-
sociative dictionary tables. Some property names have spe-
cific built-in semantics for the simulation engine, including
amplitude (“amp”), forward and angular velocity (“move”
and “turn”), instantaneous forces (“push” and “twist”), color
and scale, visibility and presence (“visible” and “enable”),
as well as some read-only properties such as unit vectors of
the coordinate frame (“ux”, “uy”, “uz”) and nearest neighbor
(“nearest”). Users can add other arbitrary property names
and values as desired.

For managing multiple agents we drew inspiration from
HTML/CSS web technologies, which afford a sophisticated
system for declarative configuration of groups and individ-
ual document elements.7 Each agent can also be associated
with one or more “tags”, akin to the classes of CSS. Tags
are dynamically modifiable associative tables of properties.
Tags serve as templates for new agents: once a tag has prop-
erties defined, any new agents created with that tag will be
initialized with these properties. Tags can be added to and
removed from agents dynamically:8

-- create an agent associated with two tags:

a = Agent("foo", "bar")

-- modify the foo tag (and thus all "foo" agents):

Tag.foo.amp = 0.5

-- modify the tags the agent associates with:

a:untag("bar")

a:tag("baz")

4.2 Queries
In addition to operating on individual agents and the vari-
ous tags in play, performers can operate over arbitrary se-
lections of active agents. Queries serve a role similar to
relational database queries or lenses and patterns in func-
tional programming, and are partly inspired by the expres-
sive jQuery9 web technology.

The Q() function constructs a query, with optional argu-
ments indicating a set of tags to start filtering; if no tags are
given, all agents are included. Chained methods refine the
filter predicate, such as first() and last() to select the
earliest and most recent members of the collection, has()
to select members with specific property names or values,
and pick() to select random sub-collections. The result of
a query can be cached and re-used. Query results are used
to call methods or set properties on all members:

-- set "amp" of the most recent foo-tagged agent:

Q("foo"):last().amp = 0.3

-- terminate all agents with a "chorus" property:

Q():has("chorus"):die()

-- set the frequency of about 50% of all agents:

Q():pick(0.5).freq = 200

-- set "freq" of four random "spin" agents:

7See www.w3.org/TR/html5 and www.w3.org/TR/CSS.
8If an agent has multiple tags with values for a property,
the last (most recent) tag applied determines the value.
9jquery.com

Q("spin"):pick(4).freq = 500

-- stop one randomly chosen agent from moving:

Q():pick():halt()

4.3 Expression Objects
Our instrument supports a declarative form of function defi-
nition through objects similar to unit generators10 and LISP
M-expressions.

A declared expression object represents a computation to
be performed. This expression object can be assigned to
properties of agents, tags, and queries, as well as perform-
ing as a unit generator graph for sound synthesis (building
upon prior work in [20]). Our expression constructors can
accept numbers or expressions as arguments. They also ac-
cept strings, which are used to index properties of agents,
and utilize operator overloading to support a more readable
syntax:

-- construct an expression:

e = (Max(Random(10), Random(10)) + 2) * 100

-- assign to "mod" for all agents tagged "foo"

-- (each receives distinct evaluations of Random)

Q("foo").mod = e

Many common math operations and signal processing be-
haviors are provided as standard. Some expression con-
structors, such as oscillators and filters, evaluate to state-
ful behaviors (functions of time) rather than atomic val-
ues. A distinct instance of the behavior is created for each
agent property assignment, and invoked continuously until
replaced or destroyed. Behaviors thus bridge unit generator
and agent concepts with an easily composable model for live
programming that is terser than function definition.

4.4 Procedural Time and Events
In addition to immediate invocations, our instrument pro-
vides a means to schedule the execution of procedural code
via coroutines, largely borrowed from [20]. Coroutines are
akin to functions that may be paused in the middle and
later resumed at that point, allowing other coroutines to
run in between. We extend the yield/resume semantics
with sample-accurate scheduling and event handling. With
wait() a coroutine can yield for a specified time in sec-
onds, or until a specified event occurs, identifed by a string
and triggered from anywhere via event(). (Agents can also
use the on() method to define callback handlers for asyn-
chronous named events.) Coroutines can embed loops and
conditions to structure time and behavior, and return by
calling themselves or other functions to implement tempo-
ral recursion.

5. PERFORMER EVALUATION
Several performers, all with prior experience in computer
music and immersive systems, reported on their experiences
with the instrument via questionnaire.

Performers described the system as playful or fun, and
commented positively on immediate “liveness”, one describ-
ing it as “the first time that I’ve felt that the coding wasn’t
getting too much in the way of the experience.” Several
players also described it as “stressful” or “frustrating,” com-
menting on the difficulties of realizing an imagined complex
behavior. All performers saw good potential and expected
that further practice would be very rewarding. Desirable
extensions mentioned included higher-level behaviors such
as physics simulation, and richer agent geometries, to com-
bat the limited time available in a performance. Performers

10Unit generators [13] essentially offer a practical, declara-
tive form of single-valued function (or closure) definition.



also suggested adding capabilities to the editor such as au-
tocompletion and visual representations of active agent/tag
associations. However the most frequent request was the
provision for virtual interfaces and physical sensors for con-
tinuous control.

In contrast to live-coding systems such as Fluxus that
superpose the code visually over the animated graphical
content, the distributed nature of our system effectively
divides attention between the editor window and the sur-
rounding immersive environment. Performers reported di-
viding attention fairly evenly between modes of observing
the world, authoring code, and observing/debugging code;
however maintaining focus in the transition between world
and editor was difficult. One performer concentrated on the
editor to develop an interesting algorithm first, then spent
more time observing the world while repeatedly triggering
small variations of this algorithm.

6. DISCUSSION
The way in which an algorithm can be represented im-
pacts its utility in live performance. Although Brown and
Sorensen suggest that agent-based systems are inappropri-
ate for live coding due to description complexity, we propose
that our multi-paradigm system can overcome this barrier,
satisfying many of the beneficial characteristics of live cod-
ing languages they identified, including wide applicability
of primitives, efficiency, dynamism, and event scheduling,
while tersely expressed behaviors remain open to modifica-
tion under human direction.11

Our agents and tags differ from HTML styles in that they
do not support nested hierarchical structures. Grouping
structures and hierarchies are conceivable, such as scene-
graphs and prototype inheritance schema, or perhaps less
hierarchical agent-assemblages with more open-ended inter-
modulation or mutual influence.

Editing a virtual world while it runs occurs frequently
in the realm of game development [8], and recently the
use of Just-In-Time compilation has broadened the scope
of in-game code editing.12 The authors have been explor-
ing similar techniques [18] and are certain that the future
of live-coding audio-visual immersive worlds has fascinating
unexplored potential.

Acknowledgements
Graciously supported by The AlloSphere Research Group,
the R. W. Deutsch Foundation, and NSF grant IIS-0855279.

7. REFERENCES
[1] A. R. Brown and A. Sorensen. Interacting with

generative music through live coding. Contemporary
Music Review, 28(1):17–29, 2009.

[2] N. Collins, A. Mclean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(03):10, Dec. 2003.

[3] G. Cox, A. Mclean, and A. Ward. Coding Praxis:
Reconsidering the Aesthetics of Code. Goriunova,
Olga and Shulgin, Alexei (ed.): readme–Software Arts
and Cultures, Edition, pages 160–175, 2004.

[4] A. de Campo. Republic: Collaborative live coding
2003–2013. In A. Blackwell, A. McLean, J. Noble, and

11However, our use of the term agent does not encompass
all the possible meanings of software agents for music and
sound art [22].

12Such as github.com/RuntimeCompiledCPlusPlus/
RuntimeCompiledCPlusPlus and the hot reload feature of
unrealengine.com/unreal_engine_4

J. Rohrhuber, editors, Collaboration and learning
through live coding, Report from Dagstuhl Seminar
13382, pages 152–153. Dagstuhl, Germany, 2013.

[5] M. Dolinsky and E. Dambik. Ygdrasil—a framework
for composing shared virtual worlds. Future
Generation Computer Systems, 2003.

[6] S. Franklin and A. Graesser. Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents.
Lecture Notes In Computer Science, 1997.

[7] J. Freeman and A. Troyer. Collaborative textual
improvisation in a laptop ensemble. Computer Music
Journal, 35(2):8–21, 2011.

[8] N. Frykholm. Cutting the pipe. Presented at GDC
Game Developers Conference 2012, 2012.

[9] A. Goldberg. Programmer as reader. Software, IEEE,
4(5):62 –70, sept. 1987.

[10] D. Griffiths. Fluxus. In A. Blackwell, A. McLean,
J. Noble, and J. Rohrhuber, editors, Collaboration
and learning through live coding, Report from
Dagstuhl Seminar 13382, pages 149–150. Dagstuhl,
Germany, 2013.

[11] H. Ji and G. Wakefield. Virtual world-making in an
interactive art installation: Time of Doubles. In
S. Bornhofen, J.-C. Heudin, A. Lioret, and J.-C.
Torrel, editors, Virtual Worlds. Science eBook, 2013.

[12] J. Kuchera-Morin, M. Wright, G. Wakefield,
C. Roberts, D. Adderton, B. Sajadi, T. Höllerer, and
A. Majumder. Immersive full-surround multi-user
system design. Computers & Graphics, 2014.

[13] M. Mathews. An acoustic compiler for music and
psychological stimuli. Bell System Technical Journal,
1961.

[14] M. Naef. Spatialized Audio Rendering for Immersive
Virtual Environments. In VRST 02 Proceedings of the
ACM symposium on Virtual Reality software and
technology, pages 1–8, May 2002.

[15] R. Potter. Just-in-time programming. In Watch What
I Do: Programming by Demonstration, pages 513–526.
MIT Press, Cambridge, MA, USA, 1993.

[16] M. Rittenbruch, A. Sorensen, J. Donovan, D. Polson,
M. Docherty, and J. Jones. The Cube: A very
large-scale interactive engagement space. In
Proceedings of the 2013 ACM intl. conf. on Interactive
tabletops and surfaces, pages 1–10. ACM, 2013.

[17] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proc. ICMC, 2012.

[18] G. Wakefield. Real-Time Meta-Programming for
Open-Ended Computational Arts. PhD thesis,
University of California Santa Barbara, 2012.

[19] G. Wakefield and W. Smith. Cosm: A toolkit for
composing immersive audio-visual worlds of agency
and autonomy. Proc. ICMC, 2011.

[20] G. Wakefield, W. Smith, and C. Roberts. LuaAV:
Extensibility and Heterogeneity for Audiovisual
Computing. Proceedings of Linux Audio Conference,
2010.

[21] P. Wegner. Why interaction is more powerful than
algorithms. Commun. ACM, 40(5):80–91, May 1997.

[22] I. Whalley. Software agents in music and sound art
research/creative work: current state and a possible
direction. Organised Sound, 14(2):156–167, 2009.

[23] M. Wooldridge and N. Jennings. Agent Theories,
Architectures, and Languages: A Survey. Intelligent
Agents, 1995.


