
Beyond Editing: Extended Interaction with Textual Code

Fragments

Charles Roberts

Media Arts & Technology

Program

charlie@charlie-roberts.com

Matthew Wright

Media Arts & Technology

Program

matt@create.ucsb.edu

JoAnn Kuchera-Morin

Media Arts & Technology

Program

jkm@create.ucsb.edu

ABSTRACT
We describe research extending the interactive a↵ordances
of textual code fragments in creative coding environments.
In particular we examine the potential of source code both
to display the state of running processes and also to alter
state using means other than traditional text editing. In
contrast to previous research that has focused on the in-
clusion of additional interactive widgets inside or alongside
text editors, our research adds a parsing stage to the run-
time evaluation of code fragments and imparts additional
interactive capabilities on the source code itself. After im-
plementing various techniques in the creative coding envi-
ronment Gibber, we evaluate our research through a sur-
vey on the various methods of visual feedback provided by
our research. In addition to results quantifying preferences
for certain techniques over others, we found near unani-
mous support among survey respondents for including sim-
ilar techniques in other live coding environments.

Author Keywords
live coding, visualization, text editors, state, human-computer
interaction

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing – Methodologies and techniques, D.2.3
[Software Engineering] Coding Tools and Techniques – Pro-
gram editors, H.5.2 [Information Interfaces and Presenta-
tion] User Interfaces – Screen design

1. INTRODUCTION
We posit that, when engaging in creative coding, it is prefer-
able to do so in a code editor that itself provides creative af-
fordances. This is particularly true in live coding, where per-
formers code audiovisual works on stage and often project
their programs for audience members to see [1, 7]. For many
performers, projecting source code is a critical component of
the performance, as it reveals the activity taking place and
potentially gives insight into the algorithmic processes at
work. As the audience is typically watching the performer’s
text editor for a significant part of any given performance,
the editor itself is an important performative element. In

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.

Copyright remains with the author(s).

many live coding environments that support graphical per-
formances, text editors are composited on top of the graph-
ical output generated by the code performers write (exam-
ples include Fluxus [3], Lich.js [9], and LivecodeLab [2]),
enabling performers and audience members to easily view
both source code and generated visuals concurrently.
The research described here specifically examines how in-

teractive a↵ordances, including techniques for manipulating
state and graphical annotations providing both continuous
and discrete feedback, can be added to source code frag-
ments in textual programming environments. As one con-
straint on our research, we use the source code of perfor-
mances as a starting point for this line of inquiry as opposed
to additional graphical widgets. However, a number of ac-
tive research projects have examined the use of graphical
widgets for these purposes in conjunction with text editors.
For example, Lee and Essl provided a separate viewing area
to display system state alongside the text editor in urMus
[4], while Swift et al. used graphical widgets overlaid on
top of the Emacs editor to display aspects of state [17]. As
a second constraint, we limit our discussion to textual pro-
gramming as opposed to visual programming languages.
The research presented here extends the browser-based

creative coding environment Gibber [12]. After document-
ing the various interactive a↵ordances we have added to
Gibber’s code fragments we will conclude with results of a
survey examining the impact of the visual annotations we
describe. Related work will be discussed in the context of
the research we present.

2. METHODOLOGY
There are various techniques for executing code during live
coding performances. Some live coding platforms, such as
LuaAV [19], ChucK [20], and LiveCodeLab [2], allow users
to seamlessly replace parts of running programs with new
code, and can include mechanisms for managing state across
versions. Other platforms, such as Impromptu [14] and Su-
perCollider [8], allow execution of individual lines or blocks
of code. Gibber uses the second model, providing keystroke
commands for executing an individual line of code, the block
enclosing the current cursor position, or selected blocks of
code.
For purposes of this research we introduced an extra pars-

ing stage into Gibber. Gibber uses the syntax tree gener-
ated by this parser to assign code that calls constructors to
the objects they create. More specifically, this parser gives
the object a property named text containing the associ-
ated source code (e.g., invocation of a constructor) that cre-
ated the object. For example, evaluating the code fragment
mysynth = Synth() results in an object named mysynth

with a property named text whose value is the string ‘mysynth
= Synth()’. The position of the code fragment in the text
editor is also marked so that it can be programatically found

126

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

Figure 1: After source code is parsed, markup is

added to textual components of constructor calls so

that each component can be easily referenced.

in the future as needed; this is an important component of
creating the continuous representations of state described
in Section 3.3.2.
Gibber also looks for the creation of musical sequences

in code blocks. A sequence in Gibber consists of a list of
values and a list of durations defining the output messages
and scheduling of the sequencer. Each element of these lists
is marked so that its position in the text editor can easily
be found no matter how code shifts during the editing of a
program. The markers enable many of the annotations that
will be described shortly.
Figure 1 shows how the text of a representative code

fragment (creating a Synth object and sequencing its note
method) is annotated upon evaluation.

3. INTERACTIVE AFFORDANCES FOR
CODE FRAGMENTS

Providing audiovisual objects information about the source
code used to create them enables a variety of annotations
and interactive a↵ordances. In this section we discuss the
capabilities we have added to Gibber to date, and, when
appropriate, also discuss previous research informing their
development.

3.1 Editing Literals via Mouse Movements
Using an idea adapted from the essays of Bret Victor [18],
this augmentation turns literals (e.g., numbers) in calls to
constructors and in sequencing calls into interactive sliders.
Consider the two lines of code below:

mysine = Sine(440, .25) // freq, amp

mysynth = Synth().note.seq([0, 1, 2, 3], 1/4)

In the first, the frequency argument (440) and the amplitude
argument (.25) both become interactive widgets. Clicking
on the literals and dragging horizontally will modify their
text and concurrently modify the frequency or amp prop-
erty of the mysine object. In a similar fashion, the argu-
ments to the note.seq method will also be converted into
interactive widgets when the last line is evaluated. Modify-
ing these values via mouse interaction does not immediately
a↵ect the mysynth object, but instead changes the internal
elements of the values and durations lists used by the ob-
ject’s sequencer.
When sequencing calls to the note method in Gibber,

users may pass either numbers or strings representing note

Figure 2: The Sampler object’s code fragment is

underlined when a user has correctly dragged a re-

source above it that can be loaded if it is dropped.

name and octave (such as ‘c5’, ‘db4’, ‘d#2’). When these
literals are turned into interactive elements, they advance
through the chromatic scale. Thus, clicking on ‘c5’ and
dragging to the right would yield values of ‘db5’, ‘d5’, ‘eb5’
etc. By default accidentals displayed are flats.
There is metadata in Gibber for every audiovisual prop-

erty, describing a canonical range of values to be used and
defining whether each property’s output is perceived lin-
early or logarithmically. This metadata is used to both
constrain the minimum and maximum values available to
mouse gestures and to map the output curve of mouse move-
ments to a linear or logarithmic scale as appropriate.

3.2 Drag and Drop Operations for Resource
Loading

Creative coding practice often takes advantage of audiovi-
sual resources that exist as files on a programmer’s com-
puter. Importing these can be tedious, as the paths to in-
dividual files often must be manually entered by the pro-
grammer / performer; this is potentially problematic in the
course of a live coding performance.
Our solution allows researchers to drag resource files di-

rectly onto certain code fragments that support the notion
of loading files, automatically loading and presenting the
file in an appropriate way. For example, if a Sampler object
is playing back an audio file, dragging a di↵erent audio file
onto its constructor’s code fragment will immediately load
and trigger playback of the new file and stop playback of
the old one. Similarly, if a 3D model is presented on the
screen, dragging a new model onto the code fragment that
generated the object will immediately replace the existing
model in the scene graph with the new resource. The code
fragment is underlined when a file is correctly positioned
above it to perform a drop, as shown in Figure 2.
The simplicity of loading files via drag and drop onto

code fragments (as opposed to manually typing individual
file paths) yielded inspiration for new functionalities in Gib-
ber objects that rely on external file resources. When test-
ing the added drag and drop interaction, we found ourselves
wanting to load multiple files concurrently, with a↵ordances
for easily selecting the file currently used for audiovisual dis-
play. This would enable, for example, rapidly interspersing
di↵erent audio files into a musical performance, or quickly
applying randomized combinations of generative fragment
shaders to a graphical scene. Accordingly, in Gibber users
can drag single files, multiple files, or entire directories of
files onto code fragments to load them all at once. Methods
are provided to select which audiovisual resource is cur-
rently displayed by an object, including one that chooses a
resource at random. Loading an audio Sampler with dozens
of files and then randomly triggering their playback to form

127

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

rhythmic patterns has yielded satisfying musical results that
have impressed Gibber users.

3.3 Continuous Display of System State
Performers capitalize on the visual aspect of live coding in
di↵erent ways. Code comments can send messages to audi-
ence members. The naming of variables and methods can
convey both humor and functionality. In many of perfor-
mances by Andrew Sorensen using his Impromptu software,
various code fragments are highlighted as the cursor moves
between them to indicate scope; in our opinion this provides
a dramatic sense of movement for the audience in addition
to pragmatic information for the performer. As mentioned
in the introduction, recent additions to both Impromptu
and another environment authored by Sorensen, Extempore
[16], have introduced graphical annotations to code that
link the “State of the World” to the “State of the Code”
[17]; they provide a↵ordances to the code editor for graph-
ically displaying the state of system output in conjunction
with the code itself. In this paper, we describe techniques
that use the font characteristics and background of code (as
opposed to additional graphical widgets such as those found
in [17]) to display insights on system state with the hope of
providing both informative and performative a↵ordances to
Gibber.

3.3.1 Sequencer Phase and Output
The use of sequencer objects in Gibber is the most com-
mon way of creating repeating patterns. As mentioned in
Section 2, all sequencer objects in Gibber consist of two
underlying lists of data, one determining timing and the
other determining output values. These lists are wrapped
in functions; by default, each time the function is called it
outputs the next element of its corresponding list. Any time
these functions select and output an element, Gibber visu-
ally highlights the corresponding text in the source code, re-
vealing both the value that is outputted as well as the timing
of when the output occurs. A number of di↵erent methods
for highlighting the source code text corresponding to the
output are provided, including flashing the background of
the text representation, creating a border around it, and
placing an underscore beneath it; the initial methods we
created are shown in Figure 3. In a survey conducted with
creative coders (discussed more thoroughly in Section 4), a
strong preference was indicated for using a border to high-
light as opposed to flashing or underscores; however, a num-
ber of commentors also suggested a combination of flashing
and borders would provide the best results. We agree with
this assessment; the borders do not obscure code while the
flashing provides a more urgent sense of time. Accordingly,
we implemented this combination and made it the default
method of revealing phase and timing. Additionally, if the
same output is triggered multiple times in succession indi-
vidual sides of the border are highlighted in a clockwise pat-
tern to indicate repetition. This clockwise progression also
shows how many times the repetition has occurred (modulo
4). Fig. 4 shows a snapshot of this animation e↵ect. Users
can select which annotation they would like to use and fur-
ther manipulate various properties such as the colors used
by the notation or the duration of flashes.
Although by default sequencers advance linearly through

their values and durations lists, elements can also be ran-
domly selected for every output. The step size for each list
can also be changed, enabling sequencers to skip elements
when moving through a given list, and also to move in re-
verse. Highlighting the current elements output by the se-
quencer makes these processes more transparent. But even
when sequencers are advancing linearly it can be useful to

Figure 3: Three modes of highlighting sequencer

phase in Gibber: a) flashing, b) border, and c) un-

derscore. Survey participants expressed a strong

preference for the bordered indication.

Figure 4: Repeated quarter note output of a kick

drum, with the borders indicating whether the cur-

rent phase of each sequence is on beat 1,2,3 or 4.

see which notes and durations are firing at any moment in
time; this shows progression through each sequence and has
the potential to increase audience understanding of events
that are occurring.
Although we are unaware of any other textual program-

ming environments that provide source code annotations
for phase and timing, the visual programming environment
SchemeBricks, by Dave Gri�ths [11], also provides anno-
tations visually indicating scheduling and control flow. In
SchemeBricks, performers use drag and drop techniques to
create modular lisp programs for generative music creation.
The visual programming components (aka ‘bricks’), flash
when signal travels through them; as such events often trig-
ger audio output, the synchronization of the flash with the
audio event helps show both performer and audience which
part of the running program is responsible for each sound
that is played.

3.3.2 Continuous Representation of Audiovisual Prop-
erties

Gibber provides a mapping abstraction that enables users to
quickly create mappings across modalities [13]. Using sim-
ple assignment, programmers can create continuous map-
pings instead of instantaneous ones simply by capitalizing
the name of the property in the righthand value of the as-
signment. The text property of each audiovisual object
(discussed in Section 2) has various properties that can be
assigned using this mapping abstraction. In e↵ect, this en-
ables font characteristics of code fragments to become con-
tinuous displays of audiovisual information. A few sample
e↵ects are shown in Figure 5.
The range of values used to determine each font charac-

teristic is adjustable on a per-object basis. If a performer
wants to create subtle shifts in font size based on the ampli-
tude of a unit generator, they can simply lower the default
maximum value for that property and raise the minimum
to create a narrower range of activity. For example:

128

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

Figure 5: Three frames showing text properties

(blur and letter spacing) being controlled by audio

parameters.

// font size is measured in ems

a = Drums(’xoxo’)

a.text.fontSize = a.Out

a.text.fontSize.min = .8

a.text.fontSize.max = 1.2

An open question is whether or not the e↵ects generated
are useful from either the perspective of the audience or the
perspective of human-computer interaction. In the survey
discussed in Section 5, we showed two examples of these
e↵ects in action. In the first example, the frequency of a
monosynth controlled the font size of the code fragment
that generated it. In the second, the output envelope of a
drum loop was used to drive blurring of text. Reactions to
these visual elements were varied, as shown by the responses
of subject #8 and subject #9:

Subject #8: ‘Size change and blurring look like
gimmicks rather than useful HCI features.’

Subject #9: ‘the blur e↵ect looks dope.’

In our live coding practice, we have primarily used these
notations with performative (as opposed to informative) in-
tent. We do not feel they positively impact our understand-
ing of the underlying processes at play in a given live coding
session. However, we are intrigued by the rather dramatic
visual e↵ects they produce and the potential impact this
could have on audience appreciation of live coding perfor-
mance. Recent research by Lee and Essl [5] also explores
this topic. In their work, text is rendered in a WebGL layer,
imbuing its presentation with a variety of e↵ects (via GLSL
shaders) and 3D transformations. This provides more op-
tions for graphical manipulation of text than what is found

in Gibber but currently removes some a↵ordances for edit-
ing (such as syntax highlighting) typically included in code
editors.

3.4 Updating Source Code to Display Data and
Function Output

Gibber programmatically manipulates source code to dis-
play both the current values stored in pattern objects used
by sequencers and the output of functions that are contained
in these patterns. Patterns have a variety of methods for
manipulating their contents, many of which are drawn from
serialist techniques. In Figure 6 we show four frames of
source code in Gibber. The last three frames show changes
to the source code (as well as the underlying data struc-
ture) resulting from various pattern manipulations. This
addition to Gibber was inspired by source code manipula-
tion found in the live coding environment ixi lang [6], which
also updates the source code of performances to reflect cur-
rent values held in musical patterns.
In Section 3.3.1 we described how annotations are used to

highlight elements that are selected for output by sequencer
objects. In the case of literals, this highlighting is all that is
required, as it provides both a temporal indication of when
the output occurs as well as showing the value outputted.
However, Gibber also enables functions to be members of
patterns; whenever a sequencer selects a function from a
pattern the function is evaluated to generate the final out-
put. Rndi and Rndf are two examples of functions that
are commonly used for this purpose; unlike their lowercase
counterparts, rndi and rndf, which output numeric values,
Rndi and Rndf output functions that generate random val-
ues each time they are called. Without extra consideration,
the particular outputs of such functions would be opaque
to audience members and performers.
With this in mind, we created two source code manip-

ulations to display the output of any function embedded
within a sequencer pattern. In the first, the original source
code that generates or refers to the function member is re-
placed by its output and updated whenever the function is
called. In the second, code comments are placed alongside
the original source code; in this manner no code is ever hid-
den. You can see a comparison of these two methods in
Figure 7. In our evaluation survey 71% of the participants
indicated a preference for using comments to show the out-
put of functions as opposed to changing the original source
code.
All source code manipulations are removed when the Gib-

ber engine is cleared (clearing removes all audiovisual ob-
jects from their respective graphs and stops output); in ef-
fect, the source code returns to its original state before any
evaluation occurred. Thus, manipulations do not perma-
nently alter the source code, enabling users to capture the
original version so that performances can be re-created.
In addition to the ixi lang precursor, Alex McLean previ-

ously explored using source code comments to display state
in his feedback.pl system [10, 21]. These comments both
displayed underlying data structures and provided input
mechanisms for changing them. Algorithms running in feed-
back.pl were also capable of modifying their source code;
these modifications (which primarily consisted of changing
the definition of variables due to the complexity of parsing
Perl) were immediately evaluated to change the running
program. In Gibber, source code modifications are not in-
tended to be evaluated; ideally evaluation would produce
no e↵ect as the source code is always displaying current
state. Instead the modifications are simply side e↵ects for
revealing algorithmic output and aspects of state that would
otherwise remain hidden.

129

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

Figure 6: Three list manipulations applied to the

values (originally 0,1,2,3) of a sequencer assigned to

a synth.

Figure 7: Two methods of displaying function out-

put as triggered by a sequencer.

4. EVALUATION
We conducted a web-based survey that collected basic infor-
mation on demographics and programming experience, then
asked opinions on videos demonstrating our various inter-
active a↵ordances in action. The average time to complete
the survey was just under ten minutes, and 102 responses
were collected between January and February of 2015. The
survey was directly emailed to the livecode mailing list1,
the Gibber mailing list2 and also to students and composi-
tion faculty at UC Santa Barbara. The respondents were
mostly males (93%), thirty to forty years of age (38%), and
with over ten years of programming experience (56%). 75%
of respondents had seen a live coding performance at some
point in their life, and 67% had programmed in an envi-
ronment that is typically used for live coding performance.
62% of respondents had experimented with Gibber in some
capacity.
The survey was fairly simple; the primary intent was to

expose subjects to the visual annotations described in this
paper, collect data on their preferences, and provide a space
for them to give comments and ideas for future work. Some
of the results have been previously mentioned in Sections 3.4
and 3.3.1. After watching a video displaying the three meth-
ods of showing sequencer phase and output, 51% of respon-
dents preferred the bordered indication, 26% preferred the
flash indicator, and 11% preferred the underscore.
73% of respondents preferred visual indicators to use muted

colors as opposed to bright ones. 82% of respondents pre-
ferred the use of code comments to indicate function out-
put as compared to replacing the source code responsible
for generating the function with its output values. Multiple
subjects indicated that they wanted to be able to customize
aspects of the notations to their personal preferences. Al-
though it was not described in the survey, this capability
is provided in Gibber and we plan on extending it in the
future.
One particularly interesting result was that 96% of par-

ticipants believed that other live coding environments could
benefit from visualizations and notations similar to the ones
displayed in the survey. This indicates a very promising re-
search direction, and we look forward to future explorations.
We are particularly interested in the e↵ect of these notations
on a more canonical ‘audience’, as opposed to the program-
mers and live coders who were the primary respondents to
this survey, and are actively designing experiments with this
goal in mind.

5. CONCLUSIONS AND FUTURE WORK
Our research extends Gibber with a variety of visual a↵or-
dances for displaying both state and the output of func-
tions. In addition, we added added interactive capabilities
to source code fragments including manipulation of audio-
visual properties and drag-and-drop loading of audiovisual
resources.
We plan to continue our research on visual annotations

while quantifying their e↵ects for performers / programmers
and audience members. Other research directions we are
considering include:

• Isolating animated sequences. Sequences that are
visually animated with source code changes yield a
sense of dynamism that is comparatively lacking in
static sections of source code. After watching a perfor-
mance that used techniques described here, one audi-
ence member remarked that she became disappointed

1http://lurk.org/groups/livecode/
2http://lurk.org/groups/gibber/

130

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

when a shifting melodic motif was no longer visible in
the editor due to scrolling; she was enjoying watching
its evolution and associating the musical results with
the changes in pattern she saw. Figuring out perfor-
mance techniques to emphasize continuous display of
patterns and algorithms could be one avenue for in-
creasing audience enjoyment of performances.

• Metaphor. There are a variety of metaphors that
could be used with the notational elements described
here. As a simple example, consider tying a fade in
amplitude of the master output bus to a fade in opac-
ity of all source code text. We believe the use of
metaphor could both aid audience understanding and
provide a variety of dramatic e↵ects.

• End-user Design of Annotations. Currently the
system for defining annotations in Gibber is fairly
opaque. How can we open exploration up to Gibber
end-users? Providing control over existing notational
properties is a good first step, but we believe we can
do more in this area.

• Annotations for Alternative Scheduling. Although
use of the sequencer object is currently Gibber’s most
idiomatic way of dealing with scheduling, Gibber does
support other approaches of dealing with time, such
as temporal recursion [15]. In a similar vein to provid-
ing end-user design of annotations, what abstractions
will make our annotation system more generalizable
so that it can accommodate these?

.
The results of our survey indicate a strong level of in-

terest. In addition to the results previously reported, over
80% of respondents indicated that they believed the tech-
niques described here were useful for performers, audience
members, teachers, and/or students. The potential for il-
luminating algorithmic processes for all of these groups is
promising, and we look forward to future experiments and
future performances using these techniques.

6. ACKNOWLEDGMENTS
This research is graciously supported by a postdoctoral fel-
lowship from the Robert W. Deutsch Foundation.

7. REFERENCES
[1] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.

Live coding in laptop performance. Organised Sound,
8(03):321–330, 2003.

[2] D. Della Casa and G. John. Livecodelab 2.0 and its
language livecodelang. In Proceedings of the 2nd ACM
SIGPLAN international workshop on Functional art,
music, modeling & design, pages 1–8. ACM, 2014.

[3] D. Gri�ths. Fluxus. In Collaboration and learning
through live coding, Report from Dagstuhl Seminar,
volume 13382, pages 149–150, 2013.

[4] S. W. Lee and G. Essl. Communication, control, and
state sharing in networked collaborative live coding.
Ann Arbor, 1001:48109–2121, 2014.

[5] S. W. Lee and G. Essl. Web-based temporal
typography for musical expression and performance.
In Proceedings of the New Interfaces of Musical
Expression Conference, 2015.

[6] T. Magnusson. ixi lang: a supercollider parasite for
live coding. In Proceedings of the International
Computer Music Conference. University of
Huddersfield, 2011.

[7] T. Magnusson. Herding cats: Observing live coding in
the wild. Computer Music Journal, 38(1):8–16, 2014.

[8] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[9] C. McKinney. Quick live coding collaboration in the
web browser. In Proceedings of the 2014 Conference
on New Interfaces for Musical Expression, pages
379–382, 2014.

[10] A. McLean. Hacking perl in nightclubs. http:
//www.perl.com/pub/2004/08/31/livecode.html,
2004.

[11] A. McLean, D. Gri�ths, N. Collins, and G. Wiggins.
Visualisation of live code. Proceedings of Electronic
Visualisation and the Arts 2010, 2010.

[12] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. Proceedings of the
International Computer Music Conference, 2012.

[13] C. Roberts, M. Wright, J. Kuchera-Morin, and
T. Höllerer. Gibber: Abstractions for creative
multimedia programming. In Proceedings of the ACM
International Conference on Multimedia, pages 67–76.
ACM, 2014.

[14] A. Sorensen. Impromptu: An interactive
programming environment for composition and
performance. In Proceedings of the Australasian
Computer Music Conference 2009, 2005.

[15] A. Sorensen. The many faces of a temporal recursion.
http://extempore.moso.com.au/temporal_

recursion.html, 2013.
[16] A. Sorensen, B. Swift, and A. Riddell. The many

meanings of live coding. Computer Music Journal,
38(1):65–76, 2014.

[17] B. Swift, A. Sorensen, H. Gardner, and J. Hosking.
Visual code annotations for cyberphysical
programming. In 1st International Workshop on Live
Programming (LIVE), 2013.

[18] B. Victor. Learnable programming.
http://worrydream.com/LearnableProgramming/,
2012.

[19] G. Wakefield, W. Smith, and C. Roberts. LuaAV:
Extensibility and Heterogeneity for Audiovisual
Computing. Proceedings of Linux Audio Conference,
2010.

[20] G. Wang, P. R. Cook, et al. Chuck: A concurrent,
on-the-fly audio programming language. In
Proceedings of the International Computer Music
Conference, pages 219–226. Singapore: International
Computer Music Association (ICMA), 2003.

[21] A. Ward, J. Rohrhuber, F. Olofsson, A. McLean,
D. Gri�ths, N. Collins, and A. Alexander. Live
algorithm programming and a temporary organisation
for its promotion. In Proceedings of the README
Software Art Conference, volume 289, page 290, 2004.

131

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

