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ABSTRACT

We document music programming in Gibber, a creative cod-
ing environment for the browser. We describe affordances
for a sample-accurate and functional approach to schedul-
ing, pattern creation and manipulation, audio synthesis, us-
ing rhythm and harmony, and score definition and playback.

1. INTRODUCTION

First introduced as an environment for live coding perfor-
mance in 2012 [1], Gibber has gradually expanded in scope
to include musical instrument design [2], 2D and 3D graph-
ics, and improved affordances for both live coding and mu-
sical composition. This paper codifies the compositional af-
fordances of Gibber, both from the perspective of real-time
composition (also known as live coding [3, 4]) and more tra-
ditional compositional practice.

Gibber embodies an interesting set of design decisions. Al-
though it primarily uses a high-level language, JavaScript, for
end-user programming, 1 it also offers low-level affordances
not found in many music programming languages, such as the
creation of multiple, sample-accurate clocks with audio-rate
modulation of timing and intra-block audio graph modifica-
tion. Efficiency is optimized whenever possible [5, 6] but it
will most likely never be as efficient as music programming
languages with C bindings; however, we feel the accessibility
of the environment (a link is all that is needed to start pro-
gramming in Gibber), the simplicity of the notation, and in-
teresting approaches to time and pattern make Gibber a com-
pelling choice as a musical programming tool.

In addition to its dedicated web environment for program-
ming, there is also a standalone JavaScript library, gibber.lib.js,
that can be included and used inside of any HTML docu-
ment. This library has been ported to work with p5.js 2 , the
JavaScript implementation of the Processing creative coding
system.

1 Graphical shader programming in Gibber is performed in GLSL.
2 http://p5js.org
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We begin by discussing the synthesis possibilities of Gib-
ber, which include a wide variety of both synthesizers and
effects. This is followed by a discussion of musical nota-
tion, including the use of symbols to represent concepts from
the Western musical tradition. We discuss musical structure
in Gibber, beginning with the use of patterns and sequencers
and proceeding to higher-level heterarchical structures. We
conclude with a discussion of our system in relation to other
music programming languages and a brief look at Gibber in
use.

2. SYNTHESIS AND SIGNAL PROCESSING

Gibber provides a variety of options for audio synthesis, many
of which are wrappers around the unit generators and instru-
ments found in Gibberish.js, a lower-level DSP library for
JavaScript [5] written specifically to support Gibber. While
users can construct custom instruments from low-level unit
generators in Gibber, one of its strengths compared to many
music programming languages (particularly JavaScript-based)
is an emphasis on usable, precomposed instruments. This
frees composers and beginning programmers from the need
to also be synthesis experts in order to achieve interesting
sonic results. Here we provide a short overview of available
synthesis options (some previously discussed in the context
of Gibberish.js [5]), along with a more detailed discussion
of several high-level unit generators that are more specific to
Gibber.

2.1 Raw Oscillators

The canonical waveforms are provided as wavetable oscilla-
tors. Additional quasi-bandlimited waveforms (pulse, square
and saw) are provided using FM synthesis techniques [7].

2.2 Sample Loading, Playback, and Manipulation

Gibber provides a variety of options for audiofile playback.
The standard Sampler object can load multiple audiofiles
concurrently, and provides methods to schedule changes to
the active buffer. It can be used to sample audio input and
any signal in Gibber’s audio graph, including the master out-
put. A Sampler’s built-in save method writes its stored
audio buffer to a .wav file, providing an easy way to record
performances or compositions.

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 50 –

mailto:charlie@charlie-roberts.com
mailto:matt@create.ucsb.edu
mailto:jkm@create.ucsb.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


The Freesound object enables users to easily query and
download audiofiles from the Freesound database [8]. The
constructor for the Freesound object takes three forms. A
single integer argument uniquely identifies a particular sound
in the database. A single string argument is used to query
the database and automatically return the highest-ranked re-
sult. Otherwise the argument is a dictionary containing the
search query and other options such as minimum and max-
imum file duration and selection parameters. Once an au-
diofile has been loaded from the database the functionality of
the Freesound object mirrors the Sampler object.

The SoundFont object provides basic support for loading
sets of samples that adhere to the General MIDI specification,
giving easy access to common synth sounds.

2.3 Synthesizers

Gibber includes a variety of pre-built synthesis objects with
varying degrees of complexity. The most basic, Synth, com-
prises an oscillator and an envelope. The Mono object is a
three-oscillator monosynth with a 24db resonant filter, while
the FM object provides simple two-operator FM synthesis with
an envelope controlling both output amplitude and the mod-
ulator index. A software emulation of the Roland TR-808
drum machine is also available, providing a synthetic coun-
terpoint to the sample-based Drums object.

2.4 Audio Effects

Gibber’s selection of audio effects includes filters, delay, re-
verb, distortion, bit-crushing, flanging, chorus, vibrato, ring
modulation, etc.; most work in either mono or stereo. Every
audio generator has a built-in array of effects applied in series
to the generator’s output. Convenience methods add effects to
this array, remove effects by name or by number in the effects
chain, or remove a particular matched object. The Bus object
can easily create parallel effects chains.

2.5 Bussing, Grouping and Soloing

The Bus object simply sums its inputs and then routes them
to another destination, typically either an effect or Gibber’s
master output. Busses also have panning and amplitude prop-
erties that can be modulated and sequenced. The Group

command takes an existing set of synthesis objects, discon-
nects them from whatever busses they are currently connected
to and routes them all into a single bus. This can be used to
quickly apply a single instance of an effect to a mix of sound
sources, as opposed to creating separate copies of the effect
for each individual ugen.

The solo function mutes all unit generators except those
passed as arguments to the function. Repeated calls to solo
can reintroduce elements to a live performance as they are
added to the argument list. A call to solo with no arguments
unmutes all previously muted objects.

2.6 Speech Synthesis and Vocoding

The Speech object controls a speech synthesis algorithm.
Users can enter English text and customize its pitch and intra-
word spacing. A background thread then renders text into the
buffer of a Sampler object for playback and manipulation.

The Vocoder object operates via dual banks of band-pass
filters; the first analyzes the frequency content of an input
modulator signal, while the second applies imparts the re-
sulting spectrum on an input carrier signal. The Robot ob-
ject is a vocoder with a PWM polysynth as the carrier and
a Speech object as the modulator, producing classic robot
voice effects.

1 robot = Robot()

2 .say.seq([ ’this’,’is’,’a’,’test’ ], 1/2 )

3 .chord.seq( Rndi(0,8,3) )

This example uses a different word every half note as the
modulator, simultaneously triggering a new chord (three ran-
dom notes from Gibber’s global scale object) as the carrier.

3. MUSICAL NOTATION IN GIBBER

Gibber offers multiple paradigms for representing musical
concepts such as pitch and rhythm, including both raw nu-
meric values (e.g., Hertz, ms) and terminology from Western
music theory (e.g., C4, half note).

3.1 Rhythm and Meter

Gibber’s master Clock object defaults to 4/4 meter at a tempo
of 120 beats per minute. Users can easily change these val-
ues, and such changes can be scheduled over time.

1 // set clock to 90 beats per minute

2 Clock.bpm = 90

3 // set time signature to be 6/8

4 Clock.timeSignature = ’6/8’

5
6 // change tempo every four measures

7 Clock.bpm.seq(

8 [ 90, 120, 140 ],

9 measures( 4 )

10 )

Gibber users can indicate timing and duration using nota-
tions typical to Western music. For example, 1/4 indicates
a quarter note, 1/13 indicates a thirteenth note, and 1 repre-
sents a whole note. Any valid JavaScript numeric expression
is accepted, enabling math such as 10

*

3/16. Gibber also
enables specifying duration by number of samples, so there
is a maxMeasures property of the master clock which sets
the threshold between interpreting small numbers as counting
measures and large numbers as counting samples. For exam-
ple, with the maxMeasures property set to its default value
of 44, the duration 34.5 would indicate thirty-four whole
notes plus a half note, while the duration 50 would indicate
50 audio samples. To indicate a number of measures above
this ceiling, the measures function return the number of
samples corresponding to a given number of measures at the
current tempo. Users who wish to avoid this amibiguity can
set maxMeasures zero and then use explicit function calls
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to the beats, measures, samples, ms, and seconds

methods.

3.2 Pitch, Frequency, Chords, and Scales

Gibber understands both numeric and symbolic representa-
tion of pitch and chords. Although it comes with a variety of
available tunings and modes, users are may also define their
own.

3.2.1 Pitch and Frequency

When the note method is called on a synthesis object, Gib-
ber examines the first value argument to it in order to deter-
mine what pitch the unit generator should begin to output.

1. If this first argument is a string, this denotes a note and
octave, e.g., ‘c4’ indicates the note C in the fourth oc-
tave, while ‘e#2’ represents E-sharp (enharmonic F) in
the second octave.

2. If the first argument is a number greater than the global
default variable Gibber.minFrequencyValue, the
number is interpreted as raw frequency in Hertz.

3. If the numeric first argument is below this threshold, it
is interpreted as a scale degree. Non-integer scale de-
grees are supported, with any fractional part dictating
the amount of upward shift between the integer part
and the next scale degree. For example, in the scale
of C major, a value of 3.5 would resolve to F#, half
way between the fourth scale degree F and the fifth
scale degree G (scale indexing is zero-origin). By de-
fault, this is relative to Gibber’s default scale object
Gibber.scale, but separate scales can also be as-
signed to individual unit generators.

These examples show these alternatives:
1 // examples assume Gibber.minFrequencyValue is 50

2 mySynth = Synth()

3 // plays C in the fourth octave

4 mySynth.note( ’c4’ )

5 // plays the frequency 440

6 mySynth.note( 440 )

7 // plays the root scale degree

8 mySynth.note( 0 )

9 // plays the third scale degree

10 mySynth.note( 2 )

3.2.2 Chords and Arpeggios

A similar concept also holds true for calling the chordmethod
on synths. Strings enable users to define chords with root,
octave and sonority. Example valid chords in Gibber include
“c4maj7”, “d#3min7b9” and “ab2dim7”. Instead of passing
strings, end-users can also pass arrays of numbers; the same
rules apply for these numbers as for the note method. Thus,
to play the root, the third and the fifth of the current scale we
would write mySynth.chord( [0,2,4] ).

Gibber’s arpeggiator object Arp accepts a chord argument
(again, either a string or array of numbers), a duration for

each note, a pattern for the arpeggiation, and the number of
octaves to extend the chord over. The following code plays a
C major seventh chord over four octaves:
arp = Arp( ’c4maj7’, 1/16, ’updown’, 4 )

3.2.3 Scales

Scales and tunings are somewhat conflated in Gibber, where
a ‘Scale’ consists of a root note and a series of ratios in fre-
quency between that root note and the subsequent scale de-
grees. Examples of alternate scales / tunings in Gibber in-
clude just intonation, Pythagorean tuning, Messiaen’s limited
modes of transposition, and the Shruti of Indian classical mu-
sic. Custom scales be easily defined by giving a root note
(either as Hertz or symbolic pitch) and an array of frequency
ratios, as shown below:

1 // 5 tone equal temperament

2 fiveTET = Theory.CustomScale(

3 ’c4’,

4 [ 1, 1.149, 1.32, 1.516, 1.741 ]

5 )

4. SEQUENCING AND PATTERN

Gibber uses single-sample processing both in its audio en-
gine and in its scheduler, so functions can be executed with
sample-accurate timing and create modifications to the au-
dio graph that take effect on the next sample, as opposed to
having to wait for the next block of samples. The future
function schedules another function to be invoked at some
point in the future, with sample-level precision, but the most
idiomatic method of dealing with time in Gibber is through
its sequencer objects.

4.1 Sequencers

A Gibber sequencer consists of two functions: values de-
termines each successive output and durations schedules
each output. Users can supply arbitrary functions for both
purposes; they can also pass single literals or arrays of values
to the sequencer constructor, which will then wrap the argu-
ments in Pattern functions, discussed in Section 4.2. Un-
like some domain-specific and mini-languages that consider
both timing and output concurrently when defining musical
pattern [9, 10], sequencers in Gibber typically treat these sep-
arately. Two exceptions to this are the Drums and EDrums
objects, which enable users to quickly define both timing and
sounds in drum patterns using a mini-language.

Although sequencers were originally stand-alone objects in
Gibber, 3 we created an abstraction that makes sequencing
much more immediately accessible, as first reported in [12].
This abstraction adds a built-in sequencer to every audiovi-
sual object in Gibber, and a seq method to all properties and
methods enabling users to quickly assign sequences to the se-
quencer for playback. Compare the old and new syntaxes for
sequencing below:

3 Sequencers are still available as the standalone Seq object, which is
comparable to the Pbind object in SuperCollider [11]
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1 synth = Synth2()

2
3 // old syntax

4 myseq = Seq({

5 target: synth,

6 note: [0,1,2,3,4],

7 cutoff: [.1,.2,.3,.4],

8 durations:[1/2,1/4,1/8]

9 })

10
11 // new syntax

12 synth.note.seq( [0,1,2,3,4], [1/2,1/4,1/8] )

13 .cutoff.seq( [.1,.2,.3,.4] )

In addition to brevity, one advantage of the newer method
is the ability to use different timings for sequencing differ-
ent properties or methods with a single sequencer; the older
syntax defines a single array of timings which is used for se-
quence changes to all audiovisual properties. Although there
are times where such varied timing is required, it can also be
musically useful to have changes to multiple properties to oc-
cur simultaneously. The most common use case for this is
triggering changes to synthesis properties whenever a note is
played. E.g, we might want to ensure that, even if the tim-
ing of note messages is determined stochastically, changes
to other properties (such as panning or filter cutoff) are trig-
gered at the same time. This can be accomplished in Gibber
by omitting information about timing from a call to the .seq
method; in this case the corresponding sequence is triggered
any time changes to another property or calls to a method
on the same synthesis object are triggered via sequencing.
We illustrate this in the examples below: in the first, a FM
synthesizer has separate timings for manipulating calls to its
notemethod and changes to its index and cmRatio prop-
erties (carrier-to-modulation ratio); in the second, changes to
the cutoff and resonance properties of a monosynth are
triggered whenever a note message occurs.

1 // make a note every quarter note, while also

2 // changing modulation index every sixteenth note

3 fm = FM()

4 .note.seq( [0,1,2,3], 1/4 )

5 .index.seq( Rndf(5,20), 1/16 )

6
7 // calls to cutoff.seq and resonance.seq

8 // don’t specify timing, so the note sequence

9 // triggers them, producing a new cutoff

10 // and resonance for each note.

11 synth = Mono()

12 .note.seq( [0,1,2,3], [1/4,1/8].rnd() )

13 .cutoff.seq( [.1,.2,.3] )

14 .resonance.seq( [.5,.75] )

The sequencers built-in to audiovisual objects in Gibber have
a rate property that supports audio-rate modulation of phase
(and thus scheduling), however, this setting affects all se-
quences created for a given object. Any of the various se-
quences managed by an object’s internal sequencer can be
individually started, stopped and modified at will.

4.2 Patterns

Patterns in Gibber are functions that repeatedly return mem-
bers of underlying lists. By default these lists are ordered,

and subsequent calls to the pattern functions will simply re-
turn the next item in the list. For example:

1 ptrn = Pattern( 1,2,3 )

2 ptrn() // outputs 1

3 ptrn() // outputs 2

4 ptrn() // outputs 3

However, every pattern has an array of filters that can
change the pattern’s return values or how it operates. Each
time the pattern is to output another value it invokes each fil-
ter, passing its current index position, phase increment (i.e.,
how far the pattern advances through the list for each function
call), the provisional value to be output, and a pointer to the
pattern object itself. A pattern filter returns an array contain-
ing the output value, index, and phase increment, which may
have any relationship to the filter’s inputs. Below is an ex-
ample of a typical pattern filter that selects a random pattern
value for output.

1 random = function( args, pattern ) {

2 var index = rndi( 0, pattern.values.length - 1 )

,

3 out = pattern.values[ index ]

4
5 args[ 0 ] = out

6 args[ 1 ] = index

7
8 return args

9 })

Another typical pattern filter is repeat, which examines
the output of the pattern and, if it matches a particular value,
subsequently repeats that output on a defined number future
invocations of the pattern function. This can be used to line up
complex polyrhythmic phrases, even if they are stochastically
determined. Consider the following:

1 a = FM().note.seq(

2 [ 0,7 ],

3 [ 1/4,1/3,1/12,1/8 ].rnd( 1/3,3,1/12,6 )

4 )

This example calls the timing array’s rnd method, causing
two filters to be applied to the array when it is converted to
a pattern object. The first filter is identical to the random
function defined above, picking a random array value on each
call. The second filter is the repeat filter, enabling a user to
specify that particular values should repeat a certain number
of times whenever they are selected. In the above example,
whenever a 1/3 note duration is selected it will be played three
times (in effect, a half note triplet); whenever a 1/12 note
duration is selected it will be played six times.

In addition to filters that are applied each time a pattern
function is executed, there are also a variety of methods that
can be used to change the underlying lists owned by pattern
objects; inspiration for these manipulations came from other
live coding environments (Tidal [10] in particular), Laurie
Spiegel’s summary of pattern manipulation techniques [13],
and extensive experimentation:

• Reverse/Retrograde - reverse the order of the underly-
ing list
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• Invert - As in twelve-tone technique, invert intervals of
all list members as compared to the first note in the row

• Rotate - shift the items in the list by a provided value.
For example 1,2,3,4 rotated +1 would be 4,1,2,3.

• Range - Restrict the list indices available for selection
to a provided range

• Store - store the current list values for later recall

• Switch - switch list values to a previously stored set

• Reset - reset list to the original values from when the
list was first created.

• Transpose - modify each member of list by adding an
argument value to it

• Scale - scale each item in the list by an argument value

• Shuffle - randomize the order of the list

• Flip - this method maintains the current members of
the list, but changes their order such that the lowest el-
ement now occupies the former position of the highest
element, the second lowest occupies the position of the
second highest, etc.

In addition to these methods, users can also set the stepSize
property for any pattern, which determines how much the in-
ternal phase of the pattern is modified after each execution.
Negative step sizes traverse the pattern values in reverse.

An important aspect of all these transformations is that they
can easily be scheduled over time using the sequencing ab-
stractions discussed in Section 4.1. For example, in the code
below, a melody (held in the values array of the note method)
is transposed up one scale degree every measure. Every four
measures the reset method is called, returning the pattern
to its original state. This process loops indefinitely.

1 a = Mono(’lead’).note.seq( [0,1,2,3], 1/4 )

2
3 // transpose by one each measure

4 a.note.values.transpose.seq( 1,1 )

5
6 // reset values list every 4 measures

7 a.note.values.reset.seq( null, 4 )

A novel visualization scheme reported in [14] reveals both
transformations to the patterns as well as which list member
is outputted whenever a pattern function is executed using
the source code itself as the primary visualization component.
This can help performers, composers, students and audiences
understand the algorithmic processes at play in a given per-
formance.

5. HIGH-LEVEL MUSICAL STRUCTURE

Although Gibber was initially created as a live coding envi-
ronment, many users expressed interest in using it for non-
realtime composition. Initially, Gibber’s future method
was used by some users to define compositional structure.

However, we consider this method to be too low-level for
many compositional purposes, as the absolute time values
used in calls to future are inflexible in accommodating change
and/or interactivity. For example, relative durations would
make it possible to easily insert new sections into an existing
piece. We wanted to create a more flexible abstraction for
defining musical structure while still providing for interactiv-
ity and dynamism. The Score object achieves these goals.

5.1 The Score Object

The Score object in Gibber consists of JavaScript functions
and corresponding timestamps for execution. Unlike Seq

objects, where output values and timing can be manipulated
independently, each score timestamp is uniquely associated
with a single function. Timestamps are relative to the previ-
ous entry in the score; in the case of the first entry, the times-
tamp is relative to when the score object’s start method is
called. The simplest use of a score object is to create a form
of note list, although it can be somewhat verbose for this pur-
pose:

1 synth = Mono()

2 score = Score([

3 0, function() { synth.note(’c4’) },

4 beats(2), function() { synth.note(’c5’) },

5 measures(1), function() { synth.note(’d5’) }

6 ])

One problem with this technique stems from the need to spec-
ify commands to be executed in the future, handled here by
wrapping the code in anonymous functions. Especially for
short commands such as playing a single note, these anony-
mous functions increase the viscosity of the notation and make
it harder to read the score. Most other solutions involving
existing JavaScript techniques are similarly verbose and con-
ceptually challenging for beginning programmers, motivating
Gibber’s deferred execution notation.

5.2 Deferred Execution

Gibber allows an underscore after the name of any audiovi-
sual method or property as syntactic sugar to create a function
for deferred execution. For example, the code syn.note (

’c4’) is equivalent to function() syn.note(’c4’)

— creating a zero-argument function that will play the note
when invoked. Using this syntax, scores can look like this:

1 score = Score([

2 0, syn.note_( ’c4’ ),

3 beats(1), syn.note_( ’d4’ ),

4 beats(1), syn.attack_( ms(500) ),

5 beats(1), syn.note_( ’e4’ )

6 ])

Although not a perfect solution, we feel this provides the
best available option in Gibber. Of course, end-users are al-
ways free to wrap code blocks in functions (and this is neces-
sary for score element that consists of multiple lines of code)
or use other methods built-in to JavaScript to create functions
for later execution.
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5.3 Interactive Scores

Score playback can be paused via method calls occurring out-
side the score and by timestamps in the score itself. Whenever
a timestamp is equal to the special class property Score.wait,
playback pauses until the score object receives a call to its
next method. 4 Calls to next can be made from within
the live coding environment, but could also be generated, for
example, by incoming OSC messages or one of the user in-
terface elements that Gibber offers. In the example below the
score halts after a single note is played and immediately plays
a second note after its next method is called.

1 score = Score([

2 0, function(){ synth.note( ’c4’ ) },

3 Score.wait, null,

4 0, function(){ synth.note( ’d4’ ) },

5 ])

5.4 Hierarchical Scores

Multiple Score objects can operate concurrently. Each score
object can launch other score objects and base their timing on
the completion of other scores. This open-ended approach
enables users to define their own hierarchical and heterarchi-
cal structures. Consider the canonical form of a pop song:
verse, chorus, verse, chorus, bridge, chorus. Although this
form could be achieved with a single score object, encapsu-
lating each of the three section types in a score while using
a fourth score to link them together in the appropriate order
provides greater flexibility in making modifications. The sim-
plified example below provides this structure, with three sec-
tions that each play a single note for demonstrative purposes
and a fourth score which orders and times their playback.
When Gibber sees the oncomplete property of a score ob-
ject given as a timestamp, it will wait for the identified score
to finish playback before advancing to the next timestamp /
function pair. The convenience method combine can also
be used to quickly sequence scores one after another.

1 verse = Score([ beats(1/2), synth.note_(’c4’) ])

2 chorus = Score([ beats(1/2), synth.note_(’d4’) ])

3 bridge = Score([ beats(1/2), synth.note_(’e4’) ])

4
5 song = Score([

6 0, verse,

7 verse.oncomplete, chorus,

8 chorus.oncomplete, verse,

9 verse.oncomplete, chorus,

10 chorus.oncomplete, bridge,

11 bridge.oncomplete, chorus

12 ])

13
14 // convenience method

15 song = Score.combine(

16 verse,chorus,verse,chorus,bridge,chorus

17 )

4 ’next’ was chosen as the name for this method due to its similarity in
function with a method used to resume execution by generators, a system for
coroutines that will be integrated into the next version of JavaScript (ES6).

6. DISCUSSION AND COMPARISONS

In this section we relate our work to other musical program-
ming languages, in particular discussing time, pattern, and
musical structure.

6.1 Time

While Gibber lacks support for strongly-timed semantics found
in languages like ChucK [15] and LC [16], it nonetheless
provides sample-accurate scheduling with a level of granu-
larity not found in audio programming languages that use
block-rate processing, and one that is unique to JavaScript
libraries as of February of 2015. There are no other JS li-
braries that provide sample-accurate scheduling, the ability
to dynamically change the audio graph from one sample to
the next, or audio-rate modulation of timing with multiple
clock sources. Although a per-sample processing approach
to DSP incurs performance penalties, we believe the experi-
mental approaches to time it enables are often worth the cost.

Although use of cyclic time with the .seq method is the
most idiomatic approach to time in Gibber, other techniques
can also be used. For example, temporal recursion [17], used
heavily in the live coding environment Impromptu [18] is
fairly straightforward using Gibber’s built-in futuremethod.
The goals of temporal recursion can be considered similar to
the approach taken by the live coding environment Sonic Pi
[19] and by ChucK; however, in these systems a loop with the
ability to sleep (in the case of Sonic PI) or explicitly advance
time (in the case of ChucK) is used instead of a recursive
function. LuaAV [20] provides a similar approach through
its use of co-routines. Despite different methodologies, all
these methods focus on repeated execution of code blocks
over time, whether in a loop iteration or in a function call. A
simple example of temporal recursion in Gibber is given be-
low; more advanced examples would include branching and,
potentially, launching other temporally recursive functions.

1 syn = Synth()

2
3 recurseMe = function() {

4 syn.note( rndi(0,10) )

5
6 // repeat at random every 1-4 measures

7 future( recurseMe, rndi(1,4) )

8 }

9
10 recurseMe()

After its initial creation, the recurseMe function can be
freely redefined, enabling performers to gradually develop
complex ideas and themes.

6.2 Patterns and Sequencing

A number of other music languages devote significant re-
sources to pattern manipulation. In Tidal [10], a terse yet flex-
ible mini-language enables the definition of patterns that con-
tain both timing and output information; this mini-language
is used in conjunction with Haskell to send OSC messages
to control various audio synthesis systems. Since patterns in
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Tidal contain both timing and values, different types of trans-
formations are available compared to those found in Gibber,
although many are the same: reversing, rotating, limiting the
range of values available etc. While we believe separation of
output values and timing provides the potential for additional
fine-grained control over pattern manipulation, we also think
there are a variety of useful manipulations in Tidal that work
best when considering timing and output together. To enable
this functionality in Gibber we are considering adding trans-
formations at the sequence level in addition the pattern level;
these transformations could affect both timing and output of
sequences as needed.

One precursor to Gibber that shares Gibber’s decoupling of
output and timing in sequences is the Conductive library for
Haskell by Renick Bell [21]. The Player object in Con-
ductive acts in a similar fashion to Gibber’s .seq method:
there is a function which carries out an action and a func-
tion that determines the timing of actions. We feel this is an
intuitive, yet flexible, model. In addition, Conductive also
adds a TempoClock data structure to each Player object,
which affords adjustments to both tempo and time signature.
In Gibber, tempo is controlled via the rate property on each
sequence, which can be modulated at audio-rate. However,
time signature is only available as a control on the master
clock in Gibber; there is currently no mechanism for specify-
ing it on a per-sequence level.

SuperCollider [22] is another language that offers detailed
control over pattern. Although SuperCollider provides more
options for manipulating and organizing patterns than Gibber,
it does so by exposing a variety of different classes that each
treat patterns somewhat differently. In Gibber there is a sin-
gle pattern class, but it is capable of mimicking many of the
various options in SuperCollider with functions that act as fil-
ters on pattern output and phase, as discussed in Section 4.2.
Although we feel our approach is perhaps conceptually more
elegant, it does pose a disadvantage in terms of verbosity as
the various Pattern filters in Gibber have to be explicitly
enabled.

The system of filters used in Gibber for manipulating pat-
tern function resembles the behaviors found on collections
in the Hierarchical Music Specification Language (HSML)
[23]. Just as the authors of HSML encourage users to gener-
ate their own behaviors, Gibber enables users to easily define
their own custom filters for manipulating patterns, as shown
in Figure 4.2.

6.3 Musical Structure

The best comparison to Gibber’s Score object is SuperCol-
lider’s Task object. SClang support for coroutines means
that code can be written synchronously with delays as needed,
which is more elegant than the array-based approach provided
here. However, as JavaScript support for coroutines is not
standardized across browsers (as of February of 2015 5 ), we
feel our solution is an efficient, lisible compromise within our
language constraints.

5 http://kangax.github.io/compat-table/es6/#generators

Buxton et al. were perhaps the first to explore this type of
open-ended musical hierarchy in their Structured Sound Syn-
thesis Project [24]. The SmOKe music representation system
[25, 26] also contains a open-ended approach to hierarchi-
cal structure similar to the Score object in Gibber. While
the low-level unit of a Score object in Gibber is an exe-
cutable function, SmOKe EventList objects contain Events,
which define abstracted key/value dictionaries to be used in
processing. Each event has a start time that it is associated
with in the event list, and event lists can nest other event lists
arbitrarily.

In the Java Music Specification Language(JSML) [27], a
successor to HSML, a variety of collection objects are avail-
able for scheduling the launch of objects that implement the
Composable Java interface. These collection objects can be
freely nested, and provide affordances not currently avail-
able in Gibber’s Score object. For example, the JSML
ParallelCollection object launches a set of multiple
objects or collections in parallel, and waits for all of them to
finish before continuing to the next set. We plan to extend
Gibber’s score object to support similar functionality.

7. CONCLUSIONS

Gibber has been used for a variety of purposes since its cre-
ation. It has been used to teach music principles and digital
instrument design to middle school and high school students,
in a variety of both solo and ensemble live coding perfor-
mances, and to publish compositions online. Whenever a user
saves a file to Gibber’s central database, they are given a URL
that links directly to their file for sharing. This URL not a link
to a rendered audio file, but rather to the source code itself,
enabling consumers to modify and experiment with published
compositions.

In June of 2014 the band 65daysofstatic published a piece
in Gibber and promoted the URL on their Facebook page 6 ;
Gibber’s server was rapidly overwhelmed by people trying to
view the composition. After re-configuring the server to bet-
ter accommodate the load, thousands of people successfully
viewed and ran the composition inside of Gibber; we believe
this to be the first time an algorithmic composition by a noted
popular music group was published via real-time rendering
in the browser. The features we have added to Gibber since
then, particularly the Score and Pattern objects, should
ease the compositional process in future works, and we look
forward to seeing how users take advantage of them.
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